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Abstract. The main purpose of this article is to investigate some special kinds of symmetries
and conservation laws of some partial differential equations (PDEs) and systems which play
a significant role in physics. In fact, we review Lie point symmetry, approximate and general-
ized symmetry, Hamiltonian symmetry, µ-symmetry and different approaches for evaluating
conservation laws of PDEs and systems. Additionally, we discuss the effect of the change of
variables on the bi-Hamiltonian structure of some equations and obtain the corresponding
Hamiltonian formalism of the transformed equation.
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1. Introduction

The symmetry group method has an important role in the analysis of differential
equations. Also, the theory of Lie symmetry groups of differential equations was first
developed by Lie. The symmetry group of PDEs system is the largest local Lie group
of point transformations of both the independent and dependent variables of differential
equations with the outstanding property of conserving the set of solutions. The sym-
metry group in Lie theory include the class of geometric transformations which act on
the solutions by transforming their graphs. The Lie group method is a useful approach
for constructing exact solutions of differential equations and implies many properties for
both of the system and their solutions. In addition, many other types of exact solutions
of PDEs can be obtained via the Lie group method. Classification of the group invari-
ant solutions, detection of linearizing transformations, reduction of the order of ordinary
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differential equations (ODEs) and mapping solutions to other solutions are other im-
portant applications of Lie groups in the theory of differential equations. Further, based
on the Lie symmetry method, a PDE class which is invariant under a given group of
transformations can be derived. For many other applications of Lie symmetries, we refer
to [1, 20]. On the other hand, the concept of a conservation law and the relationship
between symmetries and conservation laws, which are mathematical formulations of the
familiar physical laws of conservation of energy, conservation of momentum and so on,
play a significant key in the analysis of basic properties of the solutions. Asystematic
way for the determination of conservation laws associated with variational symmetries
for systems of Euler-Lagrange equations is indeed the famous Noether theorem. This
theorem requires a Lagrangian.There are approaches that don’t need a Lagrangian or
even assume the existence of a Lagrangian for differential equations [2, 4]. In this paper,
we review the conservation laws of some equations via different methods.

2. Symmetries

In this section, we recall some symmetries.

2.1 Approximate symmetry

First, we provide previous definitions and results in approximate symmetry of [12] that

will be needed. If a function f(x, ε) satisfies the condition lim f(x,ε)
εp = 0, it is written

f(x, ε) = o(εp) and f is named of order less than εp. If f(x, ε)− g(x, ε) = o(εp), f and g
are said to be approximately equal (with an error o(εp)) and written as f(x, ε) = g(x, ε)+
o(εp), briefly f ≈ g. The approximate equality defines an equivalence relation, and we
join functions into equivalence classes by considering f(x, ε) and g(x, ε) as members of
the same class iff f ≈ g. Given a function f(x, ε), presume

f0(x) + εf1(x) + · · ·+ εpfp(x) (1)

is the approximating polynomial of degree p in ε obtained via Taylor series expansion
of f(x, ε) in powers of ε around ε = 0. Then any function g ≈ f (in particular, f) has
the form g(x, ε) = f0(x) + εf1(x) + · · · + εpfp(x) + o(εp). Consequently, (1) is named
a canonical representative of the equivalence class of functions containing f Thus, the
equivalence class of functions g(x, ε)f(x, ε) is determined by the ordered set of p + 1
functions f0(x), · · · , fp(x). In the theory of approximate transformation groups, one can
consider ordered sets of smooth vector-functions depending on x’s and a group parame-
ter a: f0(x, a), · · · , fp(x, a) with coordinates f i

0(x, a), · · · , f i
p(x, a) for i = 1, · · · , n. Let’s

define the one-parameter family G of approximate transformations

x̄i ≈ f i
0(x, a) + εf i

1(x, a) + · · ·+ εpf i
p(x, a), i = 1, · · · , n (2)

of points x = (x1, · · · , xn) ∈ Rn into points x̄ = (x̄1, · · · , x̄n) ∈ Rn as the class of
invertible transformations

x̄ = f(x, a, ϵ) (3)
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with vector-functions f = (f1, · · · , fn) such that

f i(x, a, ϵ) ≈ f i
0(x, a) + ϵf i

1(x, a) + · · ·+ εpf i
p (x, a), i = 1, · · · , n.

Here, a is a real parameter and the condition is f(x, 0, ϵ) ≈ x.

Definition 2.1 The set of (2) is a one-parameter approximate transformation group if
f(f(x, a, ε), b, ϵ) ≈ f(x, a+ b, ε) for all transformations (3).

Definition 2.2 Presume G is a one-parameter approximate transformation group:

z̄i ≈ f(z, a, ε) ≡ f i
0(z, a) + εf i

1(z, a), i = 1, · · · , N. (4)

An approximate equation

F (z, ε) ≡ F0(z) + εF1(z) ≈ 0 (5)

is called approximately invariant regarding G, or admits G if

F (z̄, ε) ≈ F (f(z, a, ε), ε) = o(ε)

whenever z = (zl, · · · , zN ) satisfies (5).

If z = (x, u, u(1), · · · , u(k)), then (5) becomes an approximate differential equation of
order k and G is an approximate symmetry group of the differential equation.

Theorem 2.3 (5) is approximately invariant under the approximate transformation
group (4) with the generator

X = X0 + εX1 ≡ ξi0(z)
∂

∂zi
+ εξi1

∂

∂zi
, (6)

iff

[X(k)F (z, ε)]F≈0 = o(ε) (7)

or

[X
(k)
0 F0(z) + ε(X

(k)
1 F0(z) +X

(k)
0 F1(z))](2.5) = o(ε), (8)

where X(k) is the prolongation of X of order k.

The operator (6) satisfying (8) is called an infinitesimal approximate symmetry of, or
an approximate operator admitted by (5). Accordingly, (8) is termed the determining
equation for approximate symmetries.

Theorem 2.4 If (5) admits an approximate transformation group with a generator
X = X0 + εX1 (X0 6= 0), then X0 = ξi0(z)

∂
∂zi is an exact symmetry of

F0(z) = 0. (9)

(5) and (9) are termed a perturbed equation and an unperturbed equation, respectively.
Under the conditions of Theorem 2.3, X0 is a stable symmetry of (9). The corresponding
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approximate symmetry generator X = X0 + εX1 for (5) is called a deformation of the
infinitesimal symmetry X0 of (9) caused by the perturbation εF1(z). In particular, if the
most general symmetry Lie algebra of (9) is stable, we say (5) inherits the symmetries
of the unperturbed equation.

2.2 Generalized symmetries

Take a system of n-th order differential equations in p independent and q dependent
variables as follows:

4υ(x, u
(n)) = 0, υ = 1, · · · , N (10)

involving x = (x1, · · · , xp), u = (u1, · · · , uq), and the derivatives of u with respect to x
up to order n. A generalized vector field is an expression of

v =

p∑
i=1

ξi[u]
∂

∂xi
+

q∑
α=1

ϕα[u]
∂

∂uα
(11)

in which coefficient functions ξi, ϕα depend on x, u and derivatives of u. By the prolon-
gation formula of Theorem 2.36 in [20], we can define the prolonged generalized vector

field pr(n)v = v +
q∑

α=1

∑
♯J⩽n

ϕJ
α[u]

∂
∂uα

J
, where its coefficients is determined by

ϕJ
α = DJ

(
ϕα −

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i. (12)

Since all the prolongation of v have the same general expression for their coefficient
functions ϕJ

α, it is helpful to pass to the infinite prolongation, and take care of all the
derivatives at once. Given a generalized vector field v, its infinite prolongation is the
infinite sum

prv =

p∑
i=1

ξi
∂

∂xi
+

q∑
α=1

∑
J

ϕJ
α

∂

∂uαJ
, (13)

where each ϕJ
α is given by (12), and the sum in (13) now extends over all multi-indices

J = (j1, · · · , jk) for k ⩾ 0, 1 ⩽ jk ⩽ p. By the infinitesimal symmetry criterion in
Theorem 2.72 of [20], we can state the following result.

A generalized vector field v is a generalized infinitesimal symmetry of a system of (10)
iff

prv[4υ] = 0, υ = 1, · · · , l (14)

for each smooth solution u = f(x). Among all the generalized vector fields, those
in which the coefficients ξi[u] of the ∂

∂xi are zero have a important role. Assume
Q[u] = (Q1[u], · · · , Qq[u]) ∈ Aq is a q-tuple of differential functions. The generalized

vector field vQ =
q∑

α=1
Qα[u]

∂
∂uα is an evolutionary vector field and Q is its characteristic.

Note by (12) that the prolongation of an evolutionary vector field takes a simple form
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prvQ =
∑
α,J

DJQα
∂

∂uα
J
. Any generalized vector field v as in (11) has an associated evolu-

tionary representative vQ in which Q has entries Qα = ϕα −
p∑

i=1
ξiuαi for α = 1, · · · , q,

where uαi = ∂uα

∂xi . These two generalized vector fields have the same symmetry. In fact,
the computation of generalized symmetries of a given system of differential equations
proceeds in the same way as the earlier computations of geometrical symmetries, but
with the following added features:

First, we should put the symmetry in evolutionary form vQ, which has the effect of
reducing the number of unknown functions from p+q to just q, while simultaneously sim-
plifying the computation of the prolongation prvQ. One must fix the order of derivatives

on which the characteristic Q(x, u(m)) may depend. So, by taking m not too large will
yield important information on the general form of the symmetries. Finally one should
deal with the occurrence of trivial symmetries; the easiest way to handle these is to
eliminate any superfluous derivatives in Q by substitution using the prolongation of the
system.

2.3 Hamiltonian symmetries

In this part, we will provide the results on Hamiltonian operators of [20]. Presume x =
(x1, · · · , xp) is the spatial variables, and u = (u1, · · · , uq) the field variables (dependent
variables) so that each uα is a function of x1, · · · , xp and the time t. We take autonomous
systems of evolution equations ut = K[u] in which K[u] = (K1[u], · · · ,Kq[u]) is a q-tuple
of differential functions, where the square brackets indicate each Kα is a function of
x, u and finitely many partial derivatives of each uα regarding x1, · · · , xp. A system of
evolution equations is Hamiltonian if it can be written by ut = D.Eu(H). Here H[u] =∫
H[u]dx is the Hamiltonian functional, and Hamiltonian function H[u] depends on x, u,

and the derivatives of the u’s with respect to the x’s. Eu = (E1, · · · ,Eq) denotes the
Euler operator or variational derivative with respect to u. The Hamiltonian operator D
is a q × q matrix differential operator, which may depend on both x, u, and derivatives
of u (but not on t), and is required to be skew-adjoint relative to the L2-inner product
< f, g >=

∫
f.gdx =

∫ ∑
fα.gαdx. Thus, D∗ = −D, where ∗ is the formal L2 adjoint of

a differential operator. Moreover, D must satisfy a nonlinear Jacobi condition that the
corresponding poisson bracket

{P,Q} =

∫
Eu[P ].DEu[Q]dx, P =

∫
P [u]dx, Q =

∫
Q[u]dx, (15)

satisfies the Jacobi identity. In the spatial case that D is a field-independent skew-adjoint
differential operator, meaning that the coefficient of D do not depend on u or its deriva-
tives (but may depend on x), the Jacobi conditions are automatically satisfied. For more
general field-dependent operators, the complicated Jacobi conditions can be simplified
by the functional multi-vector method described in [20]. Multi-vectors are the dual ob-
jects of differential forms. To preserve the notational distinction between the two, we
use θαJ for the uni-vector corresponding to the one-form duαJ . Hence, a vertical multi-
vector is a finite sum of terms, which are the product of a differential function times
a wedge product of the basic uni-vectors. The space of functional multi-vectors is the
co-kernel of the total divergence so that two vertical multi-vectors determine the same
functional multi-vector iff they differ from a total divergence. The functional multi-vector
determined by Θ̂ is denoted by Θ =

∫
Θ̂dx. In particular,

∫
Θ̂dx = 0 iff Θ̂ = DivΨ̂ for
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some vertical multi-vector Ψ̂. This induces that we can integrate functional multi-vectors
by parts

∫
Θ̂ ∧ (DiΨ̂)dx = −

∫
(DiΘ̂) ∧ Ψ̂dx. The principal example of a bi-vector is a

Hamiltonian differential operator D, which is ΘD =
∫
θ ∧ D(θ)dx. Finally, we recall the

formal prolonged vector field: prvDθ =
∑
α,J

DJ(
∑
β

Dαβθ
β) ∂

∂uα
J
, which acts on differential

functions to produce uni-vectors. Next, let prvDθ act on vertical multi-vectors by wedg-
ing the result of its action on the coefficient differential functions with the product of
the θ’s. Since prvDθ commutes with the total derivative, there is a well-defined action of
prvDθ on the space of functional multi-vectors. The following theorem is a criterion for
showing a differential operator is genuinely Hamiltonian.

Theorem 2.5 Presume D is a skew-adjoint differential operator with corresponding
bi-vector ΘD. Then D is a Hamiltonian operator iff

prvDθ(ΘD) = 0. (16)

The proof that (16) is equivalent to the Jacobi identity for the poisson bracket deter-
mined by D can be found in [20].

2.4 µ-symmetry

PDEs with suitable solutions are one of the most important topics in various branches of
mathematical physics. The most accurate methods for order reduction and computation
conservation rules are the classical Lie theory, the general theorem [20], the direct method
[20], the µ-symmetries method [5] and the Noether theorem [19]. As we know, using Lie
transformation group theory for order reduction and constructing solutions of nonlinear
PDEs with integer order or fractional order PDEs and ODEs is one of the most efficient
fields of research in the theory of nonlinear PDEs. The λ-symmetry method has been
presented by Muriel and Romero [14], which is a modern method to order reduction of
ODEs. Gaeta and Morando [7, 8] have extended the λ-symmetries approach for ODEs to
the µ-symmetries method for PDEs. In the sequel, we will compare different symmetries
and approaches for evaluating conservation laws for PDEs.

3. Harry Dym equation

The nonlinear PDE ut = D3
x(u

− 1

2 ) is known as the Harry Dym equation [20]. It has a
bi-Hamiltonian structure, an infinite number of conservation laws and infinitely many
symmetries. Under change of variables v = u−

1

2 , this equation can be written in the
form vt = −1

2v
3vxxx. The Hamiltonian structure of the changed Harry Dym equation

and determine Hamiltonian operators of the evolution equation is investigated in [18].

3.1 Approximate symmetries of the perturbed Harry Dym equation

Consider perturbed Harry Dym equation

ut +
1

2
u3uxxx + εux = 0. (17)

Using the method of approximate transformation groups, we provide the infinitesimal
approximate symmetries (6) for the perturbed Harry Dym equation (17).
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3.2 Exact symmetries

Take the approximate group generators in the form

X = X0 + εX1 = (ξ0 + εξ1)
∂

∂x
+ (τ0 + ετ1)

∂

∂t
+ (ϕ0 + εϕ1)

∂

∂u
,

where rξi, τi and ϕi for i = 0, 1 are unknown functions ofx, t and u. Solving the deter-

mining equation X
(3)
0 (ut− 1

2u
3uxxx) |ut− 1

2
u3uxxx=0= 0 for the exact symmetries X0 of the

unperturbed equation, we obtain

ξ0 = (A1 +A2x+
A3

2
x2), τ0 = (A4 +A5t), ϕ0 = (A2 −

1

3A5
+ xA3)u,

where A1, · · · , A5 are arbitrary constants. Hence,

X0 = (A1 +A2x+
A3

2
x2)

∂

∂x
+ (A4 +A5t)

∂

∂t
+ ((A2 −

1

3A5
+ xA3)u)

∂

∂u
. (18)

Therefore, the unperturbed Harry Dym equation, admits the five-dimensional Lie algebra
with the basis

X1
0 =

∂

∂x
,X2

0 =
∂

∂t
,X3

0 = x
∂

∂x
+ u

∂

∂u
,X4

0 = 3t
∂

∂t
− u

∂

∂u
,X5

0 = x2
∂

∂x
+ 2xu

∂

∂u
. (19)

3.3 Approximate symmetries

At first, we need to determine the auxiliary function H by virtue of (5), (7) and (8), i.e.,
by

H =
1

ε
[X

(k)
0 (F0(z) + εF1(z)) |F0(z)+εF1(z)=0]. (20)

Substituting (18) of the generator X0 into (20), we obtain the auxiliary function H =
ux(A5−A2)+A3(u−xux). Now, calculate X1 by solving the inhomogeneous determining

equation for deformations X
(k)
1 F0(z) |F0(z)=0 +H = 0. So, the determining equation for

this equation is

X
(3)
1 (ut +

1

2
u3uxxx) |ut+

1

2
u3uxxx=0 +ux(A5 −A2) +A3(u− xux) = 0.

Solving the determining equation yields

ξ1 = (A5 −A2)t−A3xt+ C4x− C5 +
C3

2
x2,

τ1 = (C1t+ C2),

ϕ1 = (−A3t+ C4 + C3x+
C1

3
)u,
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where C1, · · · , C5 are arbitrary constants. Thus, we have the following approximate sym-
metries of the perturbed Harry Dym equation:

v1 =
∂

∂x
,

v2 =
∂

∂t
,

v3 = x
∂

∂x
+ u

∂

∂u
,

v4 = 3t
∂

∂t
− u

∂

∂u
,

v5 = x2
∂

∂x
+ 2xu

∂

∂u
,

v6 = ε
∂

∂x
,

v7 = ε
∂

∂t
,

v8 = ε(x
∂

∂x
+ u

∂

∂u
),

v9 = ε(3t
∂

∂t
− u

∂

∂u
),

v10 = ε(x2
∂

∂x
+ 2xu

∂

∂u
).

(21)

The following table of commutators, evaluated in the first-order of precision, shows that
the operators (21) span an ten-dimensional approximate Lie algebra, and hence, generate
an ten-parameter approximate transformations group. (21) show that all symmetries (19)
of the Harry Dym equation are stable. Hence, the perturbed equation (17) inherits the
symmetries of the unperturbed equation. The structure of the Lie algebra of symmetries

Table 1. Approximate Commutators of approximate symmetry of perturbed Harry Dym equation

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 0 0 v1 0 2v3 0 0 v6 0 2v8

v2 0 0 0 12v2 0 0 0 0 3v7 0
v3 −v1 0 0 0 v5 −v6 0 0 0 v10

v4 0 −12v2 0 0 0 0 −3v7 0 0 0
v5 −2v3 0 −v5 0 0 −2v8 0 −v10 0 0
v6 0 0 v6 0 2v8 0 0 0 0 0
v7 0 0 0 3v7 0 0 0 0 0 0
v8 −v6 0 0 0 v10 0 0 0 0 0
v9 0 −3v7 0 0 0 0 0 0 0 0
v10 −2v8 0 −v10 0 0 0 0 0 0 0

of the perturbed Harry Dym equation is evaluated in [15].

4. Camassa-Holm equation

In this section, we consider the Camassa-Holm equation

ut − utx2 + kux + 3uux = 2uxux2 + uux3 , k ∈ R. (22)

4.1 Infinitesimal generalized symmetries of Camassa-Holm equation

(22) was first introduced as a model describing propagation of unidirectional gravitational
waves in shallow water approximation, with u representing the fluid velocity at time t in
the x direction. Suppose vQ = Q[u]∂u is a generalized symmetry in evolutionary form.
Note that we can replace some derivatives of u occurring in Q by their corresponding
expressions without changing the equivalence class of v. For instance, uxxt is replaced by
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ut + kux + 3uux − 2uxuxx − uuxxx and so on. Thus each symmetry is uniquely equiva-
lent to one with characteristic Q = Q(x, t, u, ux, ut, uxx, uxt, utt, uxxx, uxtt, uttt, · · · ). The
prolongation of vQ is given by

prvQ = Q∂u +DxQ∂ux
+DtQ∂ut

+D2
xQ∂uxx

+DxDtQ∂uxt
+D2

tQ∂utt
+ · · · .

The infinitesimal condition (14) for invariance is

DtQ−D2
xDtQ+ kDxQ+ 3(uxQ+ uDQ) = 2(uxxDxQ+ uxD

2
xQ) + uxxxQ+ uD3

xQ,
(23)

which must be satisfied for all solutions. To calculate third order symmetries, we
require Q = Q(x, t, u, ux, ut, uxx, uxt, utt, uxxx, uxtt, uttt) So, upon substituting for
uxxt, uxxxt, uxxtt, · · · in (23) according to the equation and after eliminating any de-
pendence among the derivatives of the function u, we are left to a complete system of
determining PDEs. Therefore, the most general third-order characteristic function Q is

Q = (C1t−
3

2
C2u

2 +
1

2
((2uxx − 2k)C2 − 2C3)u+ C3uxx +

1

2
u2xC2 + C4)ut

+ uxt2C3 −
1

3
C2uttt −

kt

2
C1ux + (−1

3
C2u

3 − u2C3 +
C5

(k + 2u− 2uxx)
3

2

)uxxx

− 1

2
C3u

3
x +

1

2
C1k + C1u+

1

2
ux(

2C5

(k + 2u− 2uxx)
3

2

+
8

3
C2u

3

+ ((−2uxx + k)C2 + 9C3)u
2 + 4(k − 3

2
uxx)C3u+ 2C6),

where C1, · · · , C6 are arbitrary constants.

Theorem 4.1 The most general third-order infinitesimal generalized symmetries of the
Camassa-Holm equation is a R-linear combination of following six vector fields

Q1 = ux

Q2 = ut

Q3 = −1

2
ktux + tut + u+

1

2
k

Q4 = (−3

2
u2 +

1

2
(2uxx − 2k)u+

1

2
u2x)u2 −

1

3
uttt −

1

3
u3uxxx

+
1

2
ux(

8

3
u3 + (−2uxx + k)u2)

Q5 = (−u+ uxx)ut + uxtt − u3uxxx −
1

2
ux(9u

2 + 4(k − 3

2
uxx)u)

Q6 = u2t −
1

2
uxkt+

uxxx

(−2uxx + k + 2u)
3

2

+
1

2
k + u− ux

(−2uxx + k + 2u)
3

2

which vQ1
,vQ2

,vQ3
form a three-dimensional Lie algebra g of symmetry group associated

to the Camassa-Holm equation.

The symmetries ux∂u and ut∂u of the Camassa-Holm equation are just the evolutionary
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representative of the space and time translational symmetry generators. Similarly, the
symmetry vQ3

has geometric form −kt∂x+2t∂t+(−k−2u)∂u. We call these evolutionary
symmetries (vQ1

,vQ2
and vQ3

) in geometric form with Y1 = ∂x, Y2 = ∂t and Y3 =
−kt∂x + 2t∂t + (−k − 2u)∂u, respectively.

Proposition 4.2 The one-parameter groups gi(t) : M −→ M generated by Yi for
i = 1, 2, 3 are given in the following table:

g1(s) : (x, t, u) 7−→ (x+ s, t, u),

g2(s) : (x, t, u) 7−→ (x, t+ s, u),

g3(s) : (x, t, u) 7−→ (−1

2
kte2s +

1

2
kt+ x, te2s,−1

2
k + e−2s(u+

1

2
k)),

where the entries give the transformed point exp(sYi)(x, t, u) = (x̄, t̄, ū).

Consequently, we can state the following theorem:

Theorem 4.3 If u = U(x, t) is a solution of (22), there are ui(x, t) = U(x, t) for i =
1, 2, 3 and s ∈ R, where

u1 = U(x+ s, t), u2 = U(x, t+ s), u3 = e2sU
(kt
2
(1− e2s) + x, te2s

)
+

k

2

(
1− e−2s

)
.

4.2 Higher-order conservation laws for Camassa-Holm equation

Consider a system of N PDEs of order n with p independent variables x = (x1, · · · , xp)
and q dependent variables u = (u1, · · · , uq), given by (10). A conservation law of (10) is
a divergence expression

D1P1 + · · ·+DpPp = 0, (24)

holding for all solutions u = f(x) of the given system. In (24), Pi(x, u
(r)) for i = 1, · · · , p

are called the fluxes of the conservation law, and the highest-order derivative r in the
fluxes is called the order of the conservation law. If one of the independent variables
of (10) is time t, (24) takes the form DtT + DivX = 0, where Div is the spatial diver-
gence of X regarding the spatial variables x = (x1, · · · , xp). T is referred to a density
and X = (X1, · · · ,Xp) as spatial fluxes of the conservation law (24). The conserved den-
sity T and the associated flux X = (X1, · · · ,Xp) are two functions of x, t, u and the
derivatives of u regarding both x and t. Specially, each admitted conservation law arises
from multipliers λν(x, u(l)) so that λν(x, u(l))∆ν(x, u

(n)) = DiPi(x, u
(r)) holds, where the

summation convention is used whenever appropriate. The determining of conservation
laws for a PDE system (10) reduces to finding sets of multipliers. The Euler operator
regarding uj is

Euj =
∂

∂uj
−Di

∂

∂uji
+ · · ·+ (−1)sDi1 · · ·Dis

∂

∂uji1···is

+ · · · . (25)

Note that Euler operators (25) annihilate any divergence expression DiPi(x, u
(r)) and

the identities Euj (DiPi(x, u
(r))) = 0 hold for arbitrary function u and j = 1, · · · , q.
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The converse also holds. The following theorem is applied for connecting multipliers and
conservation laws.

Theorem 4.4 A set of multipliers {λν(x, u(l))}Nν=1 yields a conservation law for (10) if
the set of identities

Euj (λν(x, u(l))∆ν(x, u
(n))) = 0, j = 1, · · · , q (26)

holds identically.

The set of equations (26) yields the set of linear determining equations to find all sets
of conservation law multipliers of the PDE system (10) by considering multipliers of all
orders. See [3] for more details.

Here, we review higher order conservation laws for Camassa-Holm equation. Consider
the multipliers of λ(x, t, u, ux, ut, uxx, utt, uxt, uxxx, uttt) for (22). The determining equa-
tion for multipliers is Eu

[
λ(ut − utx2 + kux + 3uux − 2uxux2 − uux3)

]
= 0 in which the

standard Euler operator Eu is

Eu =
∂

∂u
−Dx

∂

∂ux
−Dt

∂

∂ut
+D2

x

∂

∂uxx
+DxDt

∂

∂uxt
+D2

t

∂

∂utt
− · · · ,

where Dx and Dt are the total derivatives in respect of x and t. Hence,

λ = C1utt + C1uxut + (−C1u+ C2)(uxt +
1

2
ux

2) +
2C5√

−uxx + u

+ (−2C1u+ C2)uuxx +
5

2
C1u

3 − 3

2
C2u

2 + C3u+ C4,

where C1, C2, C3, C4 and C5 are constants.
To calculate the conserved quantities T and X, we need to invert the total divergence

operator. The homotopy operator is a powerful algorithmic tool originating from homo-
logical algebra and variational bi-complexes [10]. The conserved vectors are represented
by two components T1 and T2 which are conserved density and flux, respectively. Thus,
by using the 2-dimensional homotopy (integral) formula of Hereman et al. [11], we have
computed conserved vectors in [17].

5. Whitham-Broer-Kaup equations

The system of equations WBK

ut = uux + vx −
1

2
uxx and vt = (uv)x +

1

2
vxx (27)

admits three Hamiltonian operators

D0 =

(
0 Dx

Dx 0

)
, D1 =

(
2Dx Dx.u−D2

x

uDx +D2
x 2vDx + vx

)
,

D2 =

(
4uDx + 2ux 4vDx + 2vx +Dx(Dx − u)2

4vDx + 2vx + (Dx + u)2Dx (Dx + u)(2vDx + vx)− (2vDx + vx)(Dx − u)

)
,
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and so can be written in Hamiltonian form in three distinct ways [6]. The skew symmetry
of these Hamiltonian structures is manifest. The proof of the Jacobi identity for this
structures as well their compatibility can be shown by the standard method of functional
multi vectors. As the coefficients of D0 do not depend on u or its derivatives, D0 is a
Hamiltonian operator. For D1, it is enough to show prvD1θ(ΘD1

) = 0, where ΘD1
is the

corresponding functional bi-vector and θ = (θ, ζ) so that θ and ζ are the basic uni-vectors
corresponding to u and v, respectively.

5.1 Conservation Laws

Give a system of N PDEs of order n with p independent variables x = (x1, · · · , xp) and
q dependent variables u = (u1, · · · , uq) by

∆ν(x, u
(n)) = 0, ν = 1, · · · , N. (28)

A conservation law of (28) is a divergence expression

D1P1 + · · ·+DpPp = 0 (29)

holding for all solutions u = f(x) of the given system. In (29), Pi(x, u
(r)) for i = 1, · · · , p

are named the fluxes of the conservation law, and the highest-order derivative r present
in the fluxes is the order of the conservation law. If one of the independent variables of
(28) is time t, the conservation law (29) takes the form DtT+DivX = 0, where Div is the
spatial divergence of X regarding the spatial variables x = (x1, · · · , xp). Here, T is referred
to a density and X = (X1, · · · ,Xp) is spatial fluxes of the conservation law (29). The
conserved density T and the associated flux X = (X1, · · · ,Xp) are two functions of x, t, u
and the derivatives of u regarding both x and t. Specially, each admitted conservation
law arises from multipliers λν(x, u(l)) such that λν(x, u(l))∆ν(x, u

(n)) = DiPi(x, u
(r))

holds identically, where the summation convention is used whenever appropriate. The
determining of conservation laws for a given PDE system (28) reduces to finding sets of
multipliers.

Here, one can show the Euler operators annihilate any divergence expression
DiPi(x, u

(r)) and the identities Euj (DiPi(x, u
(r))) = 0 hold for arbitrary function u and

j = 1, · · · , q. The converse also holds. Specifically, the only scalar expressions annihi-
lated by Euler operators are divergence expressions. The following theorem is applied for
connecting multipliers and conservation laws.

Theorem 5.1 A set of multipliers {λν(x, u(l))}Nν=1 yields a conservation law for the PDE
system (28) iff

Euj (λν(x, u(l))∆ν(x, u
(n))) = 0, j = 1, · · · , q. (30)

holds identically.

The set of equations (30) yields the set of linear determining equations to find all sets
of conservation law multipliers of (28) by considering multipliers of all orders. See [13]
for more details.

Now, we recall conservation laws for (27). Consider the multipliers of the form

λ1(x, t, u, ux, ux2 , ux3 , v, vx, vx2 , vx3), λ2(x, t, u, ux, ux2 , ux3 , v, vx, vx2 , vx3)
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for (22). The determining equations for multipliers is

Eu

[
λ1(ut − uux + vx −

1

2
ux2)

]
= 0,

Eu

[
λ2(vt − (uv)x +

1

2
vx2)

]
= 0,

Ev

[
λ1(ut − uux + vx −

1

2
ux2

]
= 0,

Ev

[
λ2(vt − (uv)x +

1

2
vx2)

]
= 0.

Hence,

λ1 = (2c2u+ c3)v
2 + ((vx +

1

3
ux2 +

2

3
u3)c2 + c3u

2 + c1t+ c5 + 2c4u)v

+ (
1

6
vx3 +

1

3
uxvx + vxu

2 +
2

3
uvxx)c2 + c4vx + c3(

1

3
vxx + uvx) + c6,

λ2 = −1

6
c2u

4 +
1

3
c3u

3 + ((2v − ux)c2 + c4)u
2 + (

2

3
c2uxx + c3(2v − ux) + c1t+ c5)u

+ (
1

3
vx2 − 1

6
ux3 + v2 − uxv +

1

2
ux

2)c2 + c1x+ c4(2v − ux) +
1

3
c3ux2 + c7

where ci for i = 1, · · · , 7 are constants. Here, the first homotopy formula is reviewed
to construct conservation laws of (22). It is described in [2, Bluman et al.]. Conserved
vectors are represented by two components T1 and T2 which are conserved density and
flux, respectively and computed in details in [16].

5.2 Hamiltonian Symmetries

The correspondence between Hamiltonian symmetry groups and conservation laws for
systems of evolution equations in Hamiltonian form is known as Noether theorem, after
the prototype [19]. This relationship has been discussed by Olver [20], Gelfand and
Dikii [9]. Any conservation law of a system of evolution equations takes the form DtT+
DivX = 0 in which Div denotes spatial divergence. Note that if T(x, t, u(n)) is each
differential function and u is a solution to the evolutionary system ut = K[u], then
Dt = ∂tT + prvK(T), where ∂t = ∂/∂t denotes the partial t-derivative. Hence, T is
the density for a conservation law of the system iff its associated functional T satisfies
∂T /∂t+prvK(T ) = 0. For Hamiltonian form of our system, the following proposition is
used.

Proposition 5.2 [20] Assume D is a Hamiltonian operator with poisson bracket (15).
For each H =

∫
Hdx, there is an evolutionary vector field v̂H called the Hamiltonain

vector field associated with H satisfying prv̂H(P) = {P,H} for all functionals P. Indeed,
v̂H has characteristic DδH = DE(H).

Hence, the bracket relation immediately leads to the Noether relation between Hamil-
tonian symmetries and conservation laws. So, for the system of equations WBK, general-
ized symmetries which are Hamiltonian can be deduced from conserved densities by the
Hamiltonian operators.
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Theorem 5.3 The system of WBK equations admits Hamiltonian symmetries with the
following characteristics for Hamiltonian operator D0,

Qu
1 = ut, Qv

1 = vt, Qu
2 = ux, Qv

2 = vx Qu
3 = tux + 1, Qv

3 = tvx,

Qu
4 = (−ux + 2v)ux − uuxx +

1

3
uxxx + 2uvx, Qv

4 = vxux + u2vx + uvxx +
1

3
vxxx,

Qu
5 =

5

3
uxuxx +

1

3
ux

2 − uxxu
2 − 2

3
vuxx +

1

3
uuxx +

2

3
uuxxx −

1

6
uxxxx + 2u2vx

− 2

3
vxux +

1

3
vxxx,

Qv
5 = 2uxv

2 + vxxux −
1

3
vxux +

2

3
vxuxx +

1

3
vuxxx +

2

3
vxu

3 +
2

3
vx

2 + vxxu
2

+
2

3
vvxx −

1

3
uvxx +

2

3
uvxxx +

1

6
vxxxx.

Also, generalized symmetries corresponding to the Hamiltonian operators D1 can be
deduced from the conservation laws. Thus, the Hamiltonian symmetries relative to D1

are

Qu
1 = ut, Qv

1 = vt,

Qu
2 = 2tut + xux + u, Qv

2 = 2tvt + xvx + 2v,

Qu
3 = 4uvx + 4vux + u(−uxx + 2vx) + u2ux + 2v − ux + uxxx,

Qv
3 = 2uvt + 4vxux + 2uvx2 + vxxx + 4vvx + u2vx + 2v − ux,

Qu
4 = 2u2vx +

2

3
vxxx − 2uux

2 + 4vuux − uxxu
2 +

4

3
uuxxx + 2u2vx +

1

3
uxu

3

+
10

3
uxuxx − 2vxux − 2vuxx −

1

3
uxxxx,

Qv
4 = u3vx + vxxu

2 +
4

3
uvxxx + 2vxxux +

4

3
vxuxx + vxxu

2 +
1

3
vxxxx − 2ux

2v

+ 4uxv
2 − 2vuuxx +

2

3
vuxxx + 6vuvx +

1

3
vxu

3.

6. Future works

It is well-known that Hamiltonian systems of differential equations are one of the
most famous and significant concepts in physics. These important systems appear in the
various fields of physics such as motion of rigid bodies, celestial mechanics, quantiza-
tion theory, fluid mechanics, plasma physics, etc. Due to the significance of Hamiltonian
structures, by applying the linear behavior of the Euler operator, characteristics, pro-
longation and Fréchet derivative of vector fields, we can extend approximate symmetry
methods on the Hamiltonian and bi-Hamiltonian systems of evolution equations to inves-
tigate the interplay between approximate symmetry groups, approximate conservation
laws and approximate recursion operators. Also, we can extend µ-symmetry methods on
Hamiltonian systems to make new conservation laws.
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