Application of chitosan as a new method to increase sustainable production of agricultural products
Subject Areas : Agronomy
Mohammad Aziz Rezaie
1
,
Babak Pasari
2
,
Khosro Mohammadi
3
,
اسعد رخزادی
4
,
Ezzat karami
5
1 - Department of Agronomy and Plant Breeding, Sa.C., Islamic Azad University, Sanandaj, Iran.
2 - Department of Agronomy and Plant Breeding, Sa.C., Islamic Azad University, Sanandaj, Iran.
3 - Associate Prof, Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
4 - استادیار دانشکده کشاورزی دانشگاه آزاد سنندج
5 - Assistant Professor, college of Agriculture, Islamic Azad University, Sanandaj
Keywords: Chitosan, Growth promoter, Stress, Sustainable agriculture, Yield,
Abstract :
Abstract
Rapid population growth and the increasing need for food make it inevitable to increase agricultural production. At the same time, the use of conventional methods to increase agricultural production, including the use of chemical fertilizers and pesticides in crops, has caused environmental problems, regardless of the high cost. Therefore, in the last few decades, increasing the quantity and quality of crops through environmentally friendly methods has received much attention and emphasis. The use of chitosan, a cationic polysaccharide derived from chitin, is obtained from waste materials from the processing of seafood containing crustaceans such as shrimp and crab, and has recently attracted the attention of researchers. Chitosan increases vegetative growth, increases the quantitative and qualitative yield of crops, reduces drought and salinity stress, repels some pests and diseases, and increases the shelf life and storage of crops and horticultural products after harvest. As a biodegradable and environmentally friendly material, this compound increases the yield of agricultural products by increasing the absorption of nutrients, stimulating germination, increasing photosynthetic pigments, and vegetative growth. Chitosan also increases the resistance of plants to drought stress through antioxidant activity, reduced stomatal density, and reduced transpiration rate. Increasing the quality of agricultural products, including increasing the percentage of oil, protein, and carbohydrates, are other benefits of using chitosan in sustainable agriculture.
1) پاشازاده، ب.، الهامی راد، ا. ح.، حاج نجاری، ح. و پ، شرایعی، پ. 1400. بررسی اﺛﺮ پوشش کیتوزان و عصاره دارﭼﯿﻦ بر خصوصیات کیفی، فیزیکوشیمیایی و میکروبی میوه سیب طی نگهداری در سردخانه. نشریه فرآوری و نگهداری مواد غذایی. 13(4): 42-23.
2) رحمانی، ا.، سلگی، م.، خالقی، ع.ر. و ع. میرزاخانی. 1399. افزایش عمر گلجایی گل شاخه بریده آنتوریوم با استفاده از کیتوزان .دوفصلنامه فنآوری تولیدات گیاهی. 12(1): 15-1.
3) زندیان، ف.، فرنیا، ا.، شیخ االسالمی، م. و ع. رضایی زاد. 1401. بررسی کاربرد کیتوزان بر عملکرد و برخی ویژگیهای کیفی گوجهفرنگی. مهندسی زراعی (مجله علمی کشاورزی). 52 (3): 298-285.
4) عرب، ا.، آهنگر، ل. و ع. بیابانی. 1404. تاثیر پرایمینگ بذر کیتوزان بر ویژگیهای جوانهزنی و خصوصیات بیوشیمیایی گیاهچههای سیاهدانه (Nigella sativa L.) تحت تنش کادمیوم. پژوهشنامه اصلاح گیاهان زراعی. ۱۷(۱) :۱۵۸-۱۴۲.
5) علیزاده، ع.، مقدم، م.، اصغرزاده، ا. و م. محمودی سورستانی. 1401. ارزیابی کاربرد کیتوزان بر ویژگیهای رشدی، بیوشیمیایی و میزان اسانس مرزه تحت سطوح مختلف رطوبت خاک. تنشهای محیطی در علوم زراعی. 15(2): 442-427.
6) فکوریزاده، س.، دانشور، م. ح. و م.ر. زارع بوانی. 1402. کاربرد پس از برداشت کیتوزان و پوترسین بر حفظ کیفیت و افزایش ماندگاری خیار .(Cucumis sativus L.) مجله علوم و صنایع غذایی ایران. 20(144): 130-112.
7) قاسمی ارشد، ز.، احتشام نیا، ع.، حزباوی، ع.، مومیوند، ح.، و م. سلیمانی اقدم. 1402. بررسی اثر محلولپاشی قبل از برداشت کیتوسان و پوششدهی تیمول بر کیفیت و عمر انبارمانی توتفرنگی رقم پاروس. پژوهشهای تولید گیاهی. 30(4): 40-21.
8) مزارعی، ا.، سیروس مهر، ع. ر.، بروشکی، م.، بابایی، ز. و ع.ا. محمودی. 1398. اثر دور آبیاری و محلولپاشی کیتوزان بر برخی خصوصیات فیزیولوژیکی و میزان فعالیت آنزیمهای آنتی اکسیدانی پنیرک معمولی(Malva sylvestris) . علوم زیستی گیاهی. 11(2): 102-77.
9) Abu-Muriefah, S. S. 2013. Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. International Research Journal of Agricultural Science and Soil Science. 3(6): 192-199.
10) Berger, L. R. R., Stamford, N. P., Willadino, L. G., Laranjeira, D., de Lima, M. A. B., Malheiros, S. M. M., de Oliveira, W. J. and T.C.M. Stamford. 2016. Cowpea resistance induced against Fusarium oxysporum f. sp. Tracheiphilum by crustaceous chitosan and by biomass and chitosan obtained from Cunninghamella elegans. Biology Control. 92: 45–54.
11) Boonlertnirun, S., Suvannasara, R., Promsomboon, P. and K. Boonlertnirun. 2012. Chitosan in combination with chemical fertilizer on agronomic traits and some physiological responses relating to yield potential of rice (Oryza sativa L.). Research Journal of Biological Sciences. 7(2): 64-68.
12) Cheng, X., Zhou, U. and X. Cui. 2006. Improvement of phenylethanoid glycosides biosynthesis in Cistanchedeserticolacell suspension cultures by chitosan elicitor. Journal of Biotechnology. 121: 253-260.
13) Dzung, N.A., Khanh, V.T.P. and T.T. Dzung. 2011. Research on impact of chitosan oligomers on bio-physical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers. 84: 751-755.
14) Emami Bistgani, Z., Siadat, S.A., Bakhshandeh, A., Ghasemi Pirbalouti, A. and M. Hashemi. 2017. Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop Journal. 5: 407-415.
15) Esmaeilzadeh Bahabadi, S., Sharifi, M., Safaie, N. and M. Behmanesh. 2012. Enhancement of lignin and phenylpropanoid compounds production by chitosan in Linum album cell culthure. Journal of Plant Biology. 11: 13-26.
16) Gallegos-Morales. G, Sánchez-Yáñez, J.M, Hernández-Castillo, F.D. 2022. Chitosan in the protection of agricultural crops against phytopathogens agents. Horticultre International Journal. 6(4):168-175. DOI: 10.15406/hij.2022.06.00261
17) González, L. M., Guerrero, Y. R., Rodríguez, A. F. and Vázquez, M. N. 2015. Effect of seed treatment with chitosan on the growth of rice (Oryza sativa L.) seedlings cv. Inca lp-5 in saline medium. Cultivos Tropicales. 36(1): 136-142.
18) Guan, Y.J.J., Hu, X., Wang, J. and C.X. Shao. 2009. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Plant Science. 10: 427-433.
19) Hamel, L.P. and N. Beaudoin. 2010. Chitooligosaccharide sensing and downstream signaling: Contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta. 232: 787-806.
20) Harish Prashanth, K.V., Dharmesh, K.S., Jagannatha, R. and R.N. Tharanathan. 2007. Free radical-induced chitosan depolymerized products protect calf thymus DNA from oxidative damage. Carbohydrat. 342: 190-195.
21) Hewajulige, I.G.N., Wilson Wijeratnam, R.S., Perera, M.G.D.S. and S.A. Fernando. 2015. Extending storage life of commercially important tropical fruits using bio-waxes. Acta Horticulture. 1091: 283-290.
22) Iriti, M., Giulia, C., Sara, V., Ilaria, M., Soave, C., Fico, G. and F. Faoro. 2010. Chitosan-induced ethylene-independent resistance does not reduce crop yield in bean. Biological Control. 54: 241-247.
23) Jabnoun-Khiareddine, H., El-Mohamedy, R.S.R., Abdel-Kareem, F., Aydi Ben Abdallah, R., Gueddes-Chahed, M. and M. Daami-Remadi. 2015. Variation in chitosan and salicylic acid efficacy towards soil-borne and air-borne fungi and their suppressive effect of tomato wilt severity. Journal of Plant Pathology and Microbiology. 6(11): 1-10.
24) Janmohammadi, M., Mostafavi, H., Kazemi, H., Mahdavinia, G.H.R. and N. Sabaghnia. 2014. Effect of chitosan application on the performance of lentil genotypes under rainfed conditions. Acta Technologica Agriculturae. 4: 86-90.
25) Kerch, G. 2015. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends in Food Science and Technology. 46: 159-166.
26) Limpanavech, P., Chaiyasuta, S., Vongpromek, R., Pichyangkura, R., Khunwasi, C., Chadchanwan, S., Lotrakul, P., Bunjongrat, R., Chaidee, A. and T. Bangyeekhun. 2008. Effect of chitosan on floral production, gene expression and anatomical changes in the Dendrobium orchid. Science Horticulture. 116: 65-72.
27) Lei, C., Ma, D., Pu, G., Qiu, X., Du, Z., Wang, H., Li, G., Ye, H. and B. Liu. 2011. Foliar application of chitosan activates artemisinin biosynthesis in Artemisia annua L. Industrial Crops and Products. 33: 176-182.
28) Liu, H., Tian, W.X., Li, B., Wu, G.X., Ibrahim, M., Tao, Z.Y., Wang, Y.L., Xie, G.L., Li, H.Y. and G.C. Sun. 2012. Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letter. 34: 2291-2298.
29) Ma, L., Li, Y., Yu, C., Wang, Y., Li, X., Li, N., Chen, Q.Y. and N. Bu. 2012. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma. 249(2): 393- 398.
30) Mahdavi, B., Modarres Sanavy, S.A.M., Aghaalikhani, M., Sharifi, M. and A.Dolatabadian. 2011. Chitosan improves osmotic potential tolerance in safflower (Carthamus tinctorius L.) seedlings. Journal of Crop Improvement. 25(6): 728-741.
31) Mandal, S. 2010. Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. Journal of Biotechnology. 9: 8038-8047.
32) Mihiretu, H.C., Du Toit, E., Steyn, J.M., Laurie, S.M. and S. Robbert. 2016. Chitosan improved in vitro growth, leaf ultrastructure and acclimatization of micro propagated sweet potato. World Congress on Root and Tuber Crops Nanning, Guangxi, China, January 18‐22.
33) Mondal, M.M.A., Malek, M.A., Puteh, A.B. and M.R. Ismail. 2013. Foliar application of chitosan on growth and yield attributes of mungbean (Vigna radiata (L.) Wilczek). Bangladesh Journal of Botany. 42(1): 179-183.
34) Rojas-Pirela, M., Carillo, P., La´rez-Vela´ squez, C. and G. Romanazzi. 2024. Effects of chitosan on plant growth under stress conditions: similarities with plant growth promoting bacteria. Frontire in Plant Science. 15:1423949. doi: 10.3389/fpls.2024.1423949
35) Román-Doval, R., Torres-Arellanes, S.P., Tenorio-Barajas, A.Y., Gómez-Sánchez, A. and A.A. Valencia-Lazcano. 2023. Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers. 15(13): 2867. doi: 10.3390/polym15132867.
36) Saavedra, G.M., Figueroa, N.E., Poblete, L.A., Cherian, S. and C.R. Figueroa. 2016. Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit. Food Chemistry. 190: 448-453.
37) Salachna, P. and A. Zawadzińska. 2014. Effect of chitosan on plant growth, flowering and corms yield of potted freesia. Journal of Ecological Engineering. 15(3): 97-102.
38) Sheikha, S.A. and F.M.Al-Malki. 2011. Growth and chlorophyll responses of bean plants to chitosan applications. European Journal of Scientific Research. 50(1): 124-134.
39) Uthairatanakij, A., Teixeira da Silva, J.A. and K. Obsuwan. 2007. Chitosan for improving orchid production and quality. Orchid Science and Biotechnology. 1(1): 1-5.
40) Van, S.N., Minh, H.D. and D.N.Anh. 2013. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Bioctalysis and Agricultural Biotechnology. 2(4): 289-294.
41) Wang, X., He, M., Wang, X., Liu, S., Luo, L., Zeng, Q., Wu, Y., Zeng, Y., Yang, Z. and G. Sheng G. 2024. Emerging nanochitosan for sustainable agriculture. International Journal of Molecular Sciences. 25(22):12261. https://doi.org/10.3390/ijms252212261
42) Ye, Y.P. and Y.Q. Lou. 2009. Effect of chitosan with different concentration on drought resistance of sugarcane under drought stress. In Henan Agricultural Sciences. 11: 47-50.
43) Zeng, D. and X. Luo. 2012. Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open Journal of Soil Science. 2: 282-288.