Solutions of Diophantine equations in ordered fields
Subject Areas : Number theoryM. A. P. Cabral 1 , F. C. Marques 2 , D. P. Pombo Jr. 3
1 -
2 -
3 -
Keywords: Diophantine equations, ordered fields, computer algebra system,
Abstract :
For each integer $n \geqslant 2$, solutions of the Diophantine equations \[x_1^3 + x_2^3 + \cdots + x_{2n-1}^3 + x_{2n}^3 =y_1^3 + y_2^3 + \cdots + y_{2n-1}^3 + y_{2n}^3\] and \[x_1^4 + x_2^4 + \cdots + x_{2n-1}^4 + x_{2n}^4 =y_1^4 + y_2^4 + \cdots + y_{2n-1}^4 + y_{2n}^4\] in an arbitrary ordered field are exhibited.
[1] N. Bourbaki, Algèbre, Chapitre 6, Deuxième édition, Actualités Scientifiques et Industrielles 1179, Hermann, Paris, 1964.
[2] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Oxford University Press, Oxford, 1979.
[3] F. C. Marques, D. P. Pombo Jr., Rational solutions of certain Diophantine equations, JP J. Math. Sci. 31 (2022), 1-18.
[4] P. Swinnerton-Dyer, A solution of A4+ B4= C4+ D4, J. London Math. Soc. 18 (1943), 2-4.