Distance-based topological indices of M\"{o}bius ladder graphs: a mathematical perspective
Subject Areas : Combinatorics, Graph theory
S. Shokrollahi Yancheshmeh
1
,
M. Jahandideh Khangheshlaghi
2
1 -
2 -
Keywords: M\"{o}bius ladder, hyper Weiner index, Padmakar-Ivan, degree-distance,
Abstract :
Topological indices---quantitative descriptors of connected graphs---play a pivotal role in mathematical chemistry and network analysis by capturing key structural properties. In this research, a set of well-known distance-based topological indices, including Wiener, Hyper-Wiener, Padmakar--Ivan, Szeged, Gutman and Degree Distance have been computed for the M\"{o}bius ladder graph \(M_n\). By employing the automorphism group of the graph, \(\mathrm{Aut}(G)\), we derive closed-form expressions for each index for arbitrary \(n\). Detailed comparison for \(n\) ranging from 6 to 50, based on mathematical analysis and graphical illustrations, reveals that the Hyper-Wiener index effectively serves as a measure of central tendency and closely approximates the numerical mean of the other indices. Interestingly, the pairs (Wiener, Padmakar–Ivan) and (Szeged, Degree Distance) exhibit similar growth patterns and numerical behavior. These findings, presented in both tabular and graphical form, highlight the variations and interrelationships among the indices. To the best of our knowledge, this study offers the first systematic computation of distance-based indices for \(M_n\), revealing unique structural features. The comparative analysis not only enriches the understanding of topological indices in graph theory but also opens new avenues for applications in molecular structure modeling and biological network analysis.
[1] A. R. Ashrafi, A. Loghman, PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 55 (2006), 447-452.
[2] A. Bharami, J. Yazdani, Calculation of PI index in V-phenylenic nanotubes and nanotoruses, Proc. Nat. Conf. Appl. Nanotech. Pure Appl. Sci., Kermanshah, Iran, 2009.
[3] D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures, Chemometrics Series, Vol. 5, Research Studies Press, Chichester, UK, 1983.
[4] O. Bucicovschi, S. M. Cioabˇ a, The minimum degree distance of graphs of given order and size, Discrete Appl. Math. 156 (2008), 3518-3521.
[5] P. Dankelmann, I. Gutman, S. Mukwembi, H. C. Swart, The edgeWiener index of a graph, Discrete Math. 309 (2009), 3452-3457.
[6] M. R. Darafsheh, Computation of topological indices of some graphs, Acta. Appl. Math. 110 (2010), 1225-1235.
[7] E. Deutsch, S. Klavzar, The Szeged and the Wiener index of graphs, Eur. J. Combin. 29 (2008), 1130-1141.
[8] M. V. Diudea, Szeged-like topological indices, MATCH Commun. Math. Comput. Chem. 35 (1997), 87-97.
[9] A. A. Dobrynin, I. Gutman, S. Klavˇ zar, P.ˇZigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247-294.
[10] R. C. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput. 24 (1997), 65-84.
[11] L. Feng, W. Liu, The maximal Gutman index of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 66 (2011), 699-708.
[12] I. Gutman, A formula for the Wiener number of trees and its extension to cyclic graphs, Graph Theory Notes. N. Y. 27 (1994), 9-15.
[13] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994), 1087-1089.
[14] I. Gutman, Selected properties of the Szeged index, Chem. Phys. Lett. 436 (2007), 294-296.
[15] I. Gutman, A. A. Dobrynin, The Szeged index-a success story, Graph Theory Notes. N. Y. 34 (1998), 37-44.
[16] I. Gutman, S. Klavzar, B. Mohr, Fifty years of the Wiener index, MATCH Commun. Math. Comput. Chem. 35 (1997), 1-259.
[17] M. Hakimi-Nezhad, A. R. Ashrafi, I. Gutman, Note on degree Kirchhoff index of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013), 317-324.
[18] A. Jahanbani, Albertson energy and Albertson Estrada index of graphs, J. Math. Chem. 55 (2019), 447-452.
[19] S. S. Karimizada, Domination numbers and diameters in certain graphs, J. Linear Topol. Algebra. 13 (2024), 113-119.
[20] P. V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000), 113-118.
[21] P. V. Khadikar, K. Karmarkar, V. K. Agrawal, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001), 934-949.
[22] M. H. Khalifeh, M. R. Darafsheh, H. Jolany, The Wiener, Szeged, and PI indices of a Dendrimer nanostar, J. Comput. Theor. Nanosci. 8 (2011), 220-223.
[23] D. J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995), 50-52.
[24] M. Randic, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609-6615.
[25] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. 98 (1999), 159-163.
[26] A. I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math. 156 (2008), 125-130.
[27] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17-20.
[28] S. Yousefi, H. Yousefi-Azari, A. R. Ashrafi, M. H. Khalifeh, Computing Wiener and Szeged indices of an achiral polyhex nanotorus, J. Sci. Univ. Tehran. 33 (2008), 7-11.
[29] H. Yu, S. Tanaka, Hyper-Wiener index and its applications in QSPR/QSAR, MATCH Commun. Math. Comput. Chem. 41 (2000), 1-25.