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Abstract. Topological indices—quantitative descriptors of connected graphs—play a pivotal
role in mathematical chemistry and network analysis by capturing key structural properties.
In this research, a set of well-known distance-based topological indices, including Wiener,
Hyper-Wiener, Padmakar–Ivan, Szeged, Gutman and Degree Distance have been computed
for the Möbius ladder graph Mn. By employing the automorphism group of the graph,
Aut(G), we derive closed-form expressions for each index for arbitrary n. Detailed comparison
for n ranging from 6 to 50, based on mathematical analysis and graphical illustrations, reveals
that the Hyper-Wiener index effectively serves as a measure of central tendency and closely
approximates the numerical mean of the other indices. Interestingly, the pairs (Wiener, Pad-
makarIvan) and (Szeged, Degree Distance) exhibit similar growth patterns and numerical
behavior. These findings, presented in both tabular and graphical form, highlight the varia-
tions and interrelationships among the indices. To the best of our knowledge, this study offers
the first systematic computation of distance-based indices for Mn, revealing unique structural
features. The comparative analysis not only enriches the understanding of topological indices
in graph theory but also opens new avenues for applications in molecular structure modeling
and biological network analysis.
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1. Introduction and preliminaries

Let G be a connected graph that contains neither loops nor multiple edges. A bijective
function θ that maps the vertex set V (G) onto itself and preserves adjacency between
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vertices is called an automorphism of G. A graph invariant is a numerical characteristic
that depends solely on the graphs configuration and remains unchanged under all auto-
morphisms. A notable subclass of graph invariants, known as topological indices, plays
a key role in mathematical chemistry. When a graph is used to model a molecular struc-
ture, these indices are instrumental in predicting the compounds physical or chemical
properties [18, 19].

The Wiener index was first proposed by H. Wiener to estimate the boiling points
of paraffins [27]. Its formula is W (G) =

∑
{r,s}⊆V (G) d(r, s), where d(r, s) indicates the

minimum number of edges along any path connecting vertices r and s. An equivalent
formulation is W (G) = 1

2

∑
r∈V (G) d(r), where d(r) =

∑
x∈V (G) d(r, x) denotes the total

distance from vertex r to all other vertices in the graph [10, 12, 16, 28]. Building on this
concept, the Hyper-Wiener index, first defined by Randi [24] and later generalized by
Klein et al. [23] incorporates both linear and squared distances:

WW (G) =
1

2

∑
{r,s}⊆V (G)

[
d(r, s)2 + d(r, s)

]
,

or equivalently,

WW (G) =
1

2

W (G) +
∑

{r,s}⊆V (G)

d2(r, s)

 .

This index captures more complex structural information by assigning greater weight
to longer paths [3, 29]. The Degree Distance index (or first Schultz index) [4, 5, 25, 26]
combines degree information with distance and is given by

DD(G) =
∑

{r,s}⊆V (G)

(degG(r) + degG(s)) d(r, s),

where degG(r) is the degree of vertex r. The Gutman index [2, 11, 13, 17] modifies the
Schultz index by taking the product of degrees instead of their sum:

Gut(G) =
∑

{r,s}⊆V (G)

(degG(r) · degG(s))d(r, s).

This formulation is particularly sensitive to highly connected vertices, making it effective
for analyzing branching patterns and structural complexity. The Szeged index [7, 8, 14,
15] is expressed as Sz(G) =

∑
e=rs∈E(G) nr(e|G) · ns(e|G), where nr(e|G) and ns(e|G)

denote the number of vertices closer to r and s, respectively. These are defined as

Nr(e|G) = {u ∈ V (G) | d(u, r) < d(u, s)}, nr(e|G) = |Nr(e|G)|,

Ns(e|G) = {u ∈ V (G) | d(u, s) < d(u, r)}, ns(e|G) = |Ns(e|G)|.

The PadmakarIvan (PI) index [1, 20–22] is another edge-based descriptor defined as

PI(G) =
∑

e=rs∈E(G)

(ner(e|G) + nes(e|G)) ,
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where ner(e|G) and nes(e|G) count the number of edges in the subgraphs induced by
Nr(e|G) and Ns(e|G), respectively.

In many cases, the group of Aut(G) can significantly simplify the computation of
topological indices.

Definition 1.1 An automorphism of a simple graph G is a permutation θ on V (G) such
that for every edge xy ∈ E(G), the image θ(x)θ(y) ∈ E(G).

Remark 1 Aut(G) forms a group under composition.

Definition 1.2 The action of Aut(G) on V (G) is said to be transitive if, for every pair
y, x ∈ V (G), there exists an automorphism θ ∈ Aut(G) such that θ(y) = x. In this case,
G is called a vertex-transitive graph.

For a connected graph G, we have the following lemmas:

Lemma 1.3 [6] If the automorphism group Aut(G) partitions V (G) into orbits ∆i with

representatives yi, then W (G) = 1
2

k∑
i=1

|∆i|d(ri), where d(ri) =
∑

x∈V (G)

d(ri, x). If G is

vertex-transitive, then W (G) = 1
2 |V (G)|d(r) for any r ∈ V (G).

Lemma 1.4 [6] If Aut(G) partitions E(G) into orbits Ei with representatives ei = risi,

Sz(G) =

k∑
i=1

|Ei| · nri(ei|G) · nsi(ei|G) and PI(G) =

k∑
i=1

|Ei| ·
(
neri(ei|G) + nesi(ei|G)

)
.

The Möbius ladder Mn is a special type of cubic graph that can be seen as a variation
of the standard ladder graph, enhanced by additional edges that introduce non-planarity
and a Möbius-like topology. It consists of 2k vertices arranged in two parallel cycles re-
sembling a ladder, with adjacent vertices in each cycle connected by rungs. Unlike the
ordinary ladder graph, however, the Möbius ladder incorporates twisted connectionsop-
posite vertices are joined via crossing edges instead of direct linksforming a structure
reminiscent of a Möbius strip, which gives the graph its name. Beyond its intriguing
topological structure, the Möbius ladder has found applications across various scientific
fields. It is extensively used in modeling chemical molecules, particularly in the study
of benzenoid and cyclic compounds with conjugated bonds. Moreover, it plays an im-
portant role in cryptography and electronic circuit design, where specific symmetry and
connectivity characteristics are essential. In quantum graph theory, the Möbius ladder is
employed to analyze spectral properties, further underscoring its significance in mathe-
matical and computational research.

In this study, we compute the Wiener, Hyper-Wiener, Degree Distance, Gutman,
Szeged and PadmakarIvan indices for the Möbius ladder graph and derive their closed-
form expressions. Furthermore, we perform a comparative analysis of these indices.

2. Calculation of some distance-based indices of Mn

Lemma 2.1 Mn is vertex-transitive.

Proof. Based on Figure 1 (b), the Möbius ladder graph Mn can be represented as a
polygonal structure. This implies that its automorphism group contains a cyclic subgroup
⟨1, 2, 3, . . . , n⟩, ensuring that Mn is vertex-transitive (Definition 1.2). ■
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a. b.

Figure 1. Two different representations of Mn

Theorem 2.2 The Wiener index of Mn, |V (Mn)| = n for n > 4, is

W (Mn) =

{
1
2n

((
n
2

) (
n+4
4

)
− 1

)
, n = 4k,

1
2n

(
(n+2)2

8 − 1
)
, n = 4k + 2.

Proof. According to Lemma 1.3 and Lemma 2.1, we have

W (Mn) =
1

2
nd(x1). (1)

The value of d(xi) is computed in two separate cases: n = 4k and n = 4k+2. We consider

x1 as a representative vertex from the vertex set and d(x1) =
n∑

i=2
d(x1, xi). There are two

distinct cases.
Case 1: n = 4k. As Mn is symmetric, we have d(x1, xi) = i− 1 for 2 ⩽ i ⩽ n

4 + 1 and

n

2
+1∑

i=n

4
+2

d(x1, xi) =

n

4
+1∑

i=2

d(x1, xi),

n∑
i=n

2
+2

d(x1, xi) =

n

2∑
i=2

d(x1, xi).

Thus,

n∑
i=n

2
+2

d(x1, xi) =

n

2∑
i=2

d(x1, xi) =

n

4
+1∑

i=2

d(x1, xi) +

n

2∑
i=n

4
+2

d(x1, xi)

= 2

n

4
+1∑

i=2

d(x1, xi)− d
(
x1, xn

2
+1

)
= 2

n

4
+1∑

i=2

d(x1, xi)− 1.

Therefore,

d(x1) =

n∑
i=2

d(x1, xi) =

n

4
+1∑

i=2

d(x1, xi) +

n

2
+1∑

i=n

4
+2

d(x1, xi) +

n∑
i=n

2
+2

d(x1, xi)

= 4

n

4∑
i=1

i− 1 =
n

2

(
n+ 4

4

)
− 1.
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Case 2: n = 4k + 2. We have d(x1, xi) = i− 1 for 2 ⩽ i ⩽ n−2
4 + 2 and

n

2
+1∑

i=n−2

4
+3

d(x1, xi) =

n−2

4
+1∑

i=2

d(x1, xi),

n∑
i=n

2
+2

d(x1, xi) =

n

2∑
i=2

d(x1, xi).

Consequently,

n∑
i=n

2
+2

d(x1, xi) =

n

2∑
i=2

d(x1, xi) =

n−2

4
+2∑

i=2

d(x1, xi) +

n

2∑
i=n−2

4
+3

d(x1, xi)

= 2

n−2

4
+1∑

i=2

d(x1, xi) + d
(
x1, xn−2

4
+2

)
− d

(
x1, xn

2
+1

)
.

So,

d(x1) = 4

n−2

4∑
i=1

i+ 2

(
n− 2

4
+ 1

)
− 1 =

(n+ 2)2

8
− 1.

By substituting d(x1) into (1), the proof is complete. ■

Theorem 2.3 The Hyper-Wiener index of Mn, |V (Mn)| = n for n > 4, is

WW (Mn) =


n2(n+ 4)(n+ 8)

192
− n

2
, if n = 4k,

n(n+ 2)(n2 + 10n+ 24)

192
− n

2
, if n = 4k + 2.

Proof. According to the formulation of the Hyper-Wiener index:

WW (Mn) =
1

2

W (Mn) +
∑

{u,v}⊂V (Mn)

d2(u, v)

 . (2)

The graph Mn is vertex-transitive (Lemma 2.1). Consequently, any vertex x1 of the
vertex set V (Mn) can be chosen as a representative. Thus, the following relation holds:

∑
{u,v}⊂V (Mn)

d2(u, v) =
1

2
|Mn|d2(x1) =

1

2
nd2(x1).

Now two possible cases are considered.
Case 1: n = 4k. Based on Theorem 2.2, we have d(x1, xi) = (i− 1) for 2 ⩽ i ⩽ n

4 + 1
and

n

2
+1∑

i=n

4
+2

d2(x1, xi) =

n

4
+1∑

i=2

d2(x1, xi),

n∑
i=n

2
+2

d2(x1, xi) =

n

2∑
i=2

d2(x1, xi).
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Thus, d2(x1, xi) = (i− 1)2 for 2 ⩽ i ⩽ n
4 + 1 and

n

2
+1∑

i=n

4
+2

d2(x1, xi) =

n

4
+1∑

i=2

d2(x1, xi),

n∑
i=n

2
+2

d2(x1, xi) =

n

2∑
i=2

d2(x1, xi).

So,

n∑
i=n

2
+2

d2(x1, xi) =

n

2∑
i=2

d2(x1, xi) =

n

4
+1∑

i=2

d2(x1, xi) +

n

2∑
i=n

4
+2

d2(x1, xi)

= 2

n

4
+1∑

i=2

d2(x1, xi)− d2
(
x1, xn

2
+1

)
= 2

n

4
+1∑

i=2

d2(x1, xi)− 1.

Therefore,

d2(x1) =

n∑
i=2

d2(x1, xi) =

n

4
+1∑

i=2

d2(x1, xi) +

n

2
+1∑

i=n

4
+2

d2(x1, xi) +

n∑
i=n

2
+2

d2(x1, xi)

= 4

n

4
+1∑

i=2

d2(x1, xi)− 1 = 4

n

4∑
i=1

i2 − 1 =
n(n+ 4)(n+ 2)

48
− 1

and ∑
{u,v}⊂V (Mn)

d2(u, v) =
1

2
nd2(x1) =

n

2

(
n(n+ 4)(n+ 2)

48
− 1

)
.

Case 2: n = 4k + 2k. We have d(x1, xi) = i− 1 for 2 ⩽ i ⩽ n−2
4 + 2. Hence,

n

2
+1∑

i=n−2

4
+3

d(x1, xi) =

n−2

4
+1∑

i=2

d(x1, xi),

n∑
i=n

2
+2

d(x1, xi) =

n

2∑
i=2

d(x1, xi)

and d2(x1, xi) = (i− 1)2 for 2 ⩽ i ⩽ n−2
4 + 2. So,

n

2
+1∑

i=n−2

4
+3

d2(x1, xi) =

n−2

4
+1∑

i=2

d2(x1, xi),

n∑
i=n

2
+2

d2(x1, xi) =

n

2∑
i=2

d2(x1, xi).

Therefore,

d2(x1) =
(n+ 2)(n2 + 4n+ 12)

48
− 1,

∑
{u,v}⊂V (Mn)

d2(u, v) =
n

2

(
(n+ 2)(n2 + 4n+ 12)

48
− 1

)
.

Thus, in either case, substituting into (2), the claim follows. ■
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Proposition 2.4 Let Mn be a Möbius ladder graph for n > 4.

(a) The Degree-Distance index is

DD(Mn) =


3n

(
n

2
· n+ 4

4
− 1

)
, if n = 4k,

3n

(
(n+ 2)2

8
− 1

)
, if n = 4k + 2.

(b) The Gutman index is

Gut(Mn) =


9

2
n

(
n

2
· n+ 4

4
− 1

)
, if n = 4k,

9

2
n

(
(n+ 2)2

8
− 1

)
, if n = 4k + 2.

Proof. Since each vertex in the Möbius ladder graph Mn has degree 3, the graph is
3-regular. Based on this property, the Degree-Distance and the Gutman indices of Mn

are obtained as follows:

(a) DD(Mn) =
∑

{u,v}⊆V (Mn)

(degG(u)+degG(v)d(u, v) = 6·
∑

{u,v}⊆V (Mn)

d(u, v) = 6·W (Mn).

(b) Gut(Mn) =
∑

{u,v}⊆V (Mn)

(degG(u)·degG(v))d(u, v) = 9·
∑

{u,v}⊆V (Mn)

d(u, v) = 9·W (Mn).

By Theorem 2.2, the result follows. ■

Proposition 2.5 Let Mn be a Möbius ladder graph for n > 4. The Szeged index of Mn

is

Sz(Mn) =


3

2
n
(n
2
− 1

)2
, if n = 4k,

3

8
n3, if n = 4k + 2.

Proof. Given that |E(Mn)| = 3
2 |V (Mn)| = 3

2n, and by applying Lemma 1.4, every edge
e = uv in Mn can be classified into one of two cases.

Case 1: n = 4k. In this case, there exist exactly two vertices whose distances from both
u and v are equal to n

4 . Therefore, |Nu(e|Mn)| = |Nv(e|Mn)| = n
2 − 1 and

Sz(Mn) =
∑

e=uv∈E(Mn)

(nu(e|Mn) · nv(e|Mn)) =
3

2
n
(n
2
− 1

)2
.

Case 2: n = 4k + 2. In this case, there is no vertex equidistant from both u and v.
Hence, |Nu(e|Mn)| = |Nv(e|Mn)| = n

2 and

Sz(Mn) =
∑

e=uv∈E(Mn)

(nu(e|Mn) · nv(e|Mn)) =
3

2
n
(n
2

)2
=

3

8
n3.
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This concludes the proof. ■

Proposition 2.6 Let Mn be a Möbius ladder graph for n > 6. The PadmakarIvan index
of Mn is

PI(Mn) =

2n(n− 5), if n = 4k,

2n(n− 3), if n = 4k + 2.

Proof. The edge set of Mn includes cycle connections and rung edges, denoted by E1

and E2 respectively (see Figure 1 (b)). So, Aut(Mn) on E has two orbits E1 and E2 with
representatives e1, e2 respectively, where ei = uivi ∈ Ei, i = 1, 2.

For every edge e = uv ∈ E(Mn), as stated in Proposition 2.5:

|Nu(e1|Mn)| = |Nv(e2|Mn)| =
n

2
− 1, n = 4k,

|Nu(e1|Mn)| = |Nv(e2|Mn)| =
n

2
, n = 4k + 2.

We have two possible cases:
Case 1: n = 4k. Subgraphs induced by Nu(e1|Mn), Nv(e1|Mn), e1 ∈ E1, and similarly

for e2 ∈ E2 give

|Ne1u(e1|Mn)| = |Ne1v(e1|Mn)| =
n

2
− 2,

|Ne2u(e2|Mn)| = |Ne2v(e2|Mn)| =
3

2

(n
2
− 2

)
− 1.

Then

PI(Mn) = 2|E1|
(n
2
− 2

)
+ 2|E2|

(
3

2

(n
2
− 2

)
− 1

)
=

n

2
(n− 4) + 2n

(
3n

4
− 4

)
= 2n(n− 5).

Case 2: n = 4k + 2. By replacing n
2 − 1 with n

2 and adjusting accordingly,

PI(Mn) = 2|E1|
(n
2
− 1

)
+ 2|E2|

(
3

2

(n
2
− 1

)
− 1

)
= n

(n
2
− 1

)
+ 2n

(
3

2

(n
2
− 1

)
− 1

)
= 2n(n− 3).

Therefore, the claim is established. ■

In the following, the values of these indices for the range n from 6 to 50 are presented in
a table, and their scatter plot is illustrated. This allows for intuitive and comprehensive
comparison and analysis of the data. The lines connecting the data points in the graphs
are intended solely to improve visualization of the growth trends. It is evident that these
indices are not defined for non-integer or odd values of n.



S. Shokrollahi and M. Jahandideh / J. Linear. Topological. Algebra. 14(01) (2025) 49-59. 57

Table 1.

Index values for Möbius Ladder Graph Mn for 6 ⩽ n ⩽ 50

n W (Mn) WW (Mn) Gut(Mn) DD(Mn) Sz(Mn) PI(Mn)

6 21 27 189 126 81 36

8 44 60 396 264 108 48

10 85 135 765 510 375 140

12 138 234 1242 828 450 168

14 217 413 1953 1302 1029 308

16 312 632 2808 1872 1176 352

18 441 981 3969 2646 2187 540

20 590 1390 5310 3540 2430 600

22 781 1991 7029 4686 3993 836

24 996 2676 8964 5976 4356 912

26 1261 3627 11349 7566 6591 1196

28 1554 4690 13986 9324 7098 1288

30 1905 6105 17145 11430 10125 1620

32 2304 8640 20736 13824 11520 1920

34 2701 10413 24309 16206 14161 2252

36 3132 12492 28224 18816 16992 2608

38 3605 14883 32445 21630 20089 2988

40 4120 17600 36960 24640 23440 3392

42 4681 20667 41769 27846 27061 3820

44 5288 24108 46872 31248 30976 4272

46 5945 27947 52269 34830 35161 4748

48 6652 32208 57960 38640 39600 5248

50 7415 36915 63945 42630 44325 5772

3. Conclusion

In this paper, we derived general formulas for several topological indices of the Möbius
ladder graph and analyzed their growth behavior. To enhance understanding, we com-
puted and visualized these indices for n ranging from 6 to 50, revealing distinct growth
patterns (Table 2, Figure 2). Among these indices, the PadmakarIvan index exhibits
quadratic growth, whereas the Wiener, Szeged, Gutman, and Degree-Distance indices
demonstrate cubic growth, with the Gutman index increasing the fastest. The Hyper-
Wiener index follows a quartic growth pattern due to the presence of higher-order terms.
Notably, the Wiener and PadmakarIvan indices display similar growth behaviors, in-
dicating a strong correlation, while the Szeged and Degree-Distance indices exhibit
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Figure 2. Growth trends of the Distance-Based Indices of Mn

closely aligned trends. The Hyper-Wiener index represents an intermediate growth tra-
jectory, suggesting that the Wiener and PadmakarIvan indices may serve as lower bounds,
whereas the Szeged, Degree-Distance, and Gutman indices function as upper bounds.

These observations emphasize the hierarchical impact of graph connectivity and vertex
interactions on index values. Further statistical correlation analysis could help quantify
these relationships, while comparative visualizations reinforce observed trend similarities.
Such insights contribute to advancements in chemical graph theory, network analysis, and
complex graph modeling within computational science.
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