Understanding the Smart Public Transportation Model from the Perspective of Urban Managers (Case Study of 15 Districts of Isfahan City)
Subject Areas :Mojtaba Sanatgar 1 , Mehdi Momeni 2 , Ahmad Khademolhoseiny 3
1 - Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 - Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
3 - Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Keywords: Public transportation, smart city, City managers, Isfahan city.,
Abstract :
Isfahan metropolis is one of the pioneers of smart cities in Iran from the perspective of developing technical infrastructure and urban management in smartization. Therefore, this research has studied the perspective of Isfahan managers and officials in the field of smartization of public transportation in 15 districts of Isfahan city. The statistical population of the present study consists of specialists and experts who have sufficient knowledge in the field of urban planning development and urban transportation. The indicators related to experts are: having experience and background in scientific and research centers and private and government organizations active in the field of smart city development and urban transportation and having research background in the field of smart city. First, by studying global studies and relying on theoretical foundations and semi-structured interviews, the indicators were identified and finally, using the two-stage Delphi method, they were grouped into five organizational groups: superior, conditions of existence, physical, structural, location, and socio-cultural conditions. The results show that from the perspective of managers, the existing conditions index with a weight of (0.134) is the most important index in smart public transportation, followed by the socio-cultural conditions index with a weight of (0.131). Finally, using the opinions of urban managers and experts and the Arasteh model, the 15 regions of Isfahan city have been ranked from the perspective of managers based on the known dimensions for smart public transportation. The results show that from the perspective of managers and urban experts, region one of Isfahan city is the most prepared for smart public transportation, followed by regions eight and thirteen. In fact, these results show that these areas can be selected as pilot areas for implementing smart public transportation projects and are better prepared than other areas in terms of management dimensions .
امانپور،سعید، ، داری¬پور، نادیا.(1396). برنامهریزی حمل و نقل پایدار شهری (با تاکید بر عملکرد ناوگان اتوبوسران)،انتشارات نگارستان اندیشه، تهران،200ص
بخشی سنجدری، رضا و دریاباری، سید جمال الدین.(1399). بررسی هوشمندسازی سیستم های حمل و نقل شهری در راستای توسعه پایدار شهرها (موردمطالعه: کلانشهر تهران)، فصلنامه علمی اقتصاد و مدیریت شهری،(32)8 ، 45-31
تیموری، بشری، و رضایی، فیروزه. (1395). الگوی شهرسازی با رویکرد مناسب سازی معابر عمومی و سیستم حمل ونقل عمومی در تردد معلولان و جانبازان با رویکرد امکان سنجی و آینده پژوهی. همایش ملی مناسب سازی اماکن و معابر جهت تسهیل در تردد و دسترسی آسان.
رمضان زاده، سعید، شکیبایی فر، داود(1401)، تأثیر حمل و نقل هوشمند بر توسعه پایدار شهری، فصلنامه علمی راهور، (43)11، 114-83
عباس زادگان، مصطفی، رضازاده، راضیه و محمدی، مریم. (1390). بررسی مفهوم توسعه مبتنی بر حمل و نقل همگانی و جایگاه مترو شهری تهران در آن، باغ نظر، (17)8، 58-43
Altazin, E., Dauzère-Pérès, S., Ramond, F., & Tréfond, S. (2020). A multi-objective optimization-simulation approach for real time rescheduling in dense railway systems. European Journal of Operational Research, 286(2), 662-672.
Anthopoulos, L. G., & Anthopoulos, L. G. (2017). The rise of the smart city. Understanding smart cities: A tool for smart government or an industrial trick?, 5-45.
Appio, F. P., Lima, M., & Paroutis, S. (2019). Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges. Technological Forecasting and Social Change, 142, 1-14.
Binder, S., Maknoon, Y., & Bierlaire, M. (2017). Exogenous priority rules for the capacitated passenger assignment problem. Transportation Research Part B: Methodological, 105, 19-42.
Binder, S., Maknoon, Y., & Bierlaire, M. (2017). The multi-objective railway timetable rescheduling problem. Transportation Research Part C: Emerging Technologies, 78, 78-94.
Boisjoly, G., & Yengoh, G. T. (2017). Opening the door to social equity: local and participatory approaches to transportation planning in Montreal. European transport research review, 9(3), 1-21.
Bussieck, M. R., Lindner, T., & Lübbecke, M. E. (2004). A fast algorithm for near cost optimal line plans. Mathematical Methods of Operations Research, 59, 205-220.
Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., & Huang, X. (2019). A survey on an emerging area: Deep learning for smart city data. IEEE Transactions on Emerging Topics in Computational Intelligence, 3(5), 392-410.
Chong, M., Habib, A., Evangelopoulos, N., & Park, H. W. (2018). Dynamic capabilities of a smart city: An innovative approach to discovering urban problems and solutions. Government Information Quarterly, 35(4), 682-692.
Docherty, I., Marsden, G., & Anable, J. (2018). The governance of smart mobility. Transportation Research Part A: Policy and Practice, 115, 114-125.
Gironés, E. S., & Vrščaj, D. (2018). Who Benefits from Smart Mobility Policies? The Social Construction of Winners and Losers in the Connected Bikes Projects in the Netherlands. In Governance of the Smart Mobility Transition (pp. 85-101). Emerald Publishing Limited.
Hill, R., & Kim, J. W. (2000). Global cities and developmental states: New York, Tokyo and Seoul. Urban studies, 37(12), 2167-2195.
Ismagilova, E., Hughes, L., Dwivedi, Y. K., & Raman, K. R. (2019). Smart cities: Advances in research—An information systems perspective. International journal of information management, 47, 88-100.
Jaramillo-Sangurima, W. E., Trokhimtchouk, T., & Quezada-Sarmiento, P. A. (2018, June). Systems of support for the planning, programming, operation and administration of the smart urban public transport service: Case study city of loja. In 2018 13th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-7). IEEE.
Jessop, B., & Sum, N. L. (2000). An entrepreneurial city in action: Hong Kong's emerging strategies in and for (inter) urban competition. Urban studies, 37(12), 2287-2313.
Jianwei, H. E., Zhenxiang, Z., & Zhiheng, L. I. (2010). Benefit evaluation framework of intelligent transportation systems. Journal of Transportation Systems Engineering and Information Technology, 10(1), 81-87.
Kim, H. M., & Han, S. S. (2014). Inward foreign direct investment in Korea: location patterns and local impacts. Habitat International, 44, 146-157.
León-Coca, J. M., Reina, D. G., Toral, S. L., Barrero, F., & Bessis, N. (2014). Intelligent transportation systems and wireless access in vehicular environment technology for developing smart cities. Big Data and Internet of Things: A Roadmap for Smart Environments, 285-313.
Merlin, R. T., & Ravi, R. (2024). Empowering smart city IoT network intrusion detection with advanced ensemble learning-based feature selection. International Journal of Electrical and Electronics Research, 12(2), 367-374.
Moral-Muñoz, J. A., Cobo, M. J., Chiclana, F., Collop, A., & Herrera-Viedma, E. (2015). Analyzing highly cited papers in intelligent transportation systems. IEEE transactions on intelligent transportation systems, 17(4), 993-1001.
Neirotti, P., De Marco, A., Cagliano, A. C., Mangano, G., & Scorrano, F. (2014). Current trends in Smart City initiatives: Some stylised facts. Cities, 38, 25-36.
Perboli, G., Fedorov, S., & Rosano, M. (2020, July). The European concept of smart city: A taxonomic analysis. In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 1725-1730). IEEE.
Sochor, J., Arby, H., Karlsson, I. M., & Sarasini, S. (2018). A topological approach to Mobility as a Service: A proposed tool for understanding requirements and effects, and for aiding the integration of societal goals. Research in Transportation Business & Management, 27, 3-14.
Song, Y., Lee, K., Anderson, W. P., & Lakshmanan, T. R. (2012). Industrial agglomeration and transport accessibility in metropolitan Seoul. Journal of geographical systems, 14, 299-318.
Stępniak, C., Jelonek, D., Wyrwicka, M., & Chomiak-Orsa, I. (2021). Integration of the infrastructure of systems used in smart cities for the planning of transport and communication systems in cities. Energies, 14(11), 3069.
Turetken, O., Grefen, P., Gilsing, R., & Adali, O. E. (2019). Service-dominant business model design for digital innovation in smart mobility. Business & Information Systems Engineering, 61, 9-29.
Zawieska, J., & Pieriegud, J. (2018). Smart city as a tool for sustainable mobility and transport decarbonisation. Transport policy, 63, 39-50.
Zolfaghari, S., Azizi, N., & Jaber, M. Y. (2004). A model for holding strategy in public transit systems with real-time information. International Journal of Transport Management, 2(2), 99-110.