Determining the Distinguishing Feature in Brain Signal Processing: A Case Study of Heroin Addicts
Atefeh Tobeiha
1
(
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
)
Neda Behzadfar
2
(
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
)
Mohammad Reza Yousefi
3
(
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
)
Homayoun Mahdavi-Nasab
4
(
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
)
Ghazanfar Shahgholian
5
(
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
)
Keywords: Addiction, Brain signal analysis, Davis-Bouldin index, Power spectrum, Heroin.,
Abstract :
This study aims to identify and determine distinguishing features of brain signals in heroin-addicted individuals. Electroencephalogram (EEG) signals were collected from 16 brain channels for 15 addicted and 15 healthy individuals. Frequency and non-frequency features were evaluated using the Davies-Bouldin index. The results indicate that in heroin-addicted individuals, the frequency power in the upper alpha sub-band of the O1 channel decreased, while the approximate entropy in the Cz channel increased. To classify the data and distinguish addicted individuals from healthy ones, a Support Vector Machine (SVM) classifier was employed. The accuracy and precision of detection for approximate entropy were 91.50% and 91.15%, respectively, while for the upper alpha power of the O1 channel, they were 95.92% and 92.18%, respectively. The findings confirm the significance of selected features in distinguishing heroin-addicted individuals. The analysis of brain signals can provide a deeper understanding of the effects of heroin use on brain activity and contribute to improving treatment strategies and addiction prevention.
Selecting appropriate and specific features in addicted and healthy individuals based on individual characteristics of heroin addicts or healthy individuals based on a feature selection method
Selecting a distinguishing feature from the Davis-Bouldin method
Determining a distinguishing feature for diagnosing addiction in brain signals
Examining time and frequency domain features to identify a distinguishing feature
Introducing a new database in diagnosing addiction based on brain signals
[1] S. Liu, S. Wang, M. Zhang, Y. Xu, Z. Shao, L. Chen, W. Yang, J. Liu, K. Yuan, "Brain responses to drug cues predict craving changes in abstinent heroin users: A preliminary study", NeuroImage, vol. 237, Article Number: 118169, Aug. 2021, https://doi.org/10.1016/j.neu¬roimage.20¬21.118169.
[2] Q. Li, Y. Wang, Y. Zhang, W. Li, W. Yang, J. Zhu, N. Wu, H. Chang, Y. Zheng, W. Qin, L. Zhao, K. Yuan, J. Liu, W. Wang, J. Tian, "Craving correlates with mesolimbic responses to heroin-related cues in short-term abstinence from heroin: an event-related fMRI study", Brain Reserch, vol. 1469, pp. 63-72, Aug. 2012, https://doi.org/10.1016/j.brainres.2012.06.024.
[3] M. Corominas-Roso, I. Ibern, M. Capdevila, R. Ramon, C. Roncero, J. Ramos-Quiroga, "Benefits of EEG-neurofeedback on the modulat¬ion of impulsivity in a sample of cocaine and heroin long-term abstinent inmates: a pilot study", International Journal of Offender Therapy and Comparative Criminology, vol. 64, no. 12, pp. 1275-1298, 2020, https://doi.org/10.1177/0306624X2090470.4.
[4] A. Al-Nafjan, "Feature selection of EEG signals in neuromarketing", PeerJ Computer Science, vol. 8, Article Number: e944, April 2022, https://doi.org/10.7717/peerj-cs.944.
[5] I. Ahmad, C. Yao, L. Li, Y. Chen, Z. Liu, I. Ullah, M. Shabaz, X. Wang, K. Huang, G. Li, G. Zhao, O.W. Samuel, S. Chen, "An efficient feature selection and explainable classification method for EEG-based epileptic seizure detection", Journal of Information Security and Applications, vol. 80, Article Number: 103654, Feb. 2024, https://doi.org/10.1016/j.jisa.2023.103654.
[6] N. Behzadfar, S. M. P. Firoozabadi, K. Badie, "Low-complexity discriminative feature selection from EEG before and after short-term memory task", Clinical EEG and Neuroscience, vol. 47, no. 4, pp. 291-297, Feb. 2016, https://doi.org/10.1177/1550059416633951.
[7] R. Nawaz, K.H. Cheah, H. Nisar, V.V. Yap, "Comparison of different feature extraction methods for EEG-based emotion recognition", Biocybernetics and Biomedical Engineering, vol. 40, no. 3, pp. 910-926, July/Sept. 2020, https://doi.org/10.1016/j.bbe.2020.04.005.
[8] M.N. Dar, M.U. Akram, R. Yuvaraj, S.G. Khawaja, M. Murugappan, "EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning", Computers in Biology and Medicine, vol. 144, Article Number: 105327, 2022, https://doi.org/10.1016/j.comp¬biomed.20¬22¬.10¬5327.
[9] F. Motlagh, F. Ibrahim, J.M. Menke, R. Rashid, T. Seghatoleslam, H. Habil, "Neuroelectrophysiological approaches in heroin addiction research: A review of literatures", Journal of Neuroscience Research, vol. 94, pp. 297–309, Jan. 2016, http://dx.doi.org/10.1002/jnr.23703.
[10] Z.M. Hira, D.F. Gillies, "A review of feature selection and feature extraction methods applied on microarray data", Advances in Bioinformatics, vol. 2015, Article Number: 98363, June 2015, https://doi.org/10.1155/2015/198363.
[11] R.V. Wankar, P. Shah, R. Sutar, "Feature extraction and selection methods for motor imagery EEG signals: A review", Proceeding of the IEEE/I2C2, pp. 1-9, Coimbatore, India, June 2017, https://doi.org/10.1109/I2C2.¬2017.8321¬831.
[12] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betan¬zos, J.M. Benítez, F. Herrera, "A review of microarray datasets and applied feature selection methods", Information Sciences, vol. 282, pp. 111-135, Oct. 2014, https://doi.org/10.1016/j.ins.2014.05.042.
[13] W. Chen, Y. Cai, A. Li, Y. Su, K. Jiang, "EEG feature selection method based on maximum information coefficient and quantum particle swarm", Scientific Reports, vol. 13, Article Number: 14515, Sept. 2023, https://doi.org/10.103¬8/s41¬598-023-41682-5.
[14] J.H. Gruzelier, "EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations", Neuroscience and Biobehavioral Reviews, vol. 44, pp. 159-182, 2014. https://doi.org/10.1016/j.neu¬biorev.2014.03.015.
[15] A. J. Shackman, B.W. McMenamin, J.S. Maxwell, L.L. Greischar, R.J. Davidson, "Identifying robust and sensitive frequency bands for interrogating neural oscillations", Neuroim¬ag¬e, vol. 51, no. 4, pp. 1319-1333, 2010, https://doi.org/10.1016/j.neuroimage.2010.03.037.
[16] M. Dorvashi, N. Behzadfar, G. Shahgholian, "Detection of fatigue from electroencephalogram signal during neurofeedback training", Signal and Data Processing, vol. 19, no. 3, pp. 163-174, 2022, https://doi.org/1-0.52¬547/jsdp.19.3.163.
[17] T, Zeng, S. Li, L. Wu, Z. Feng, X. Fan, J. Yuan, X. Wang, J. Meng, H. Ma, G. Zeng, C. Kang, J. Yang, "A comparison study of impulsiveness, cognitive function, and P300 components between gamma-hydroxybutyrate and heroin-addicted patients: preliminary findings, Frontiers in Human Neuroscience, vol. 16, Article Number: 16:835922, April 2022, https://doi.org/10.3389/fnhum.2022.835922.
[18] H. Zeng, B. Yang, X. Gu, Y. Li, X. Xia, S. Gao, "CNN-based EEG classification method for drug use detection", Proceedings of the ICCPR, pp. 418-423, Beijing China, Nov. 2022, https://doi.org/10.11-45/35818¬07.3581868.
[19] X. Liang, Y. Hao, Z. Xu, N. Li, Q. Zhao, "Identifying abstinent heroin addicts on the basis of single channel’s ERP and behavioral data in the gambling task", Proceeding of the IEEE/BIBM, pp. 650-656, Seoul, Korea (South), Dec. 2020, https://doi.org/10.1109/BIBM49941.2020.9313164.
[20] G.Y. Wang, R. Kydd, T.A. Wouldes, M. Jensen, B.R. Russell, "Changes in resting EEG following methadone treatment in opiate addicts", Clinical Neurophysiology, vol. 126, no. 5, pp. 943-950, May 2015, https://doi.o¬rg/1¬0¬.1016/j.cl¬inph.2014.08¬.0¬21.
[21] A. Turnip, K.D. Esti, M.F. Amri, A.I. Simbolon, M.A. Suhendra, S. IsKandar, F.F. Wirakusumah, "Detection of drug effects on brain activity using EEG-P300 with similar stimuli”, IOP Conference Series: Materials Science and Engineering, Article Number: 012042, June 2017, https://doi.org/10.1088/1757-89¬9X/2-20/1/012042.
[22] N. Shourie, M. Firoozabadi, K. Badie, "Neurofeedback training protocols based on spectral EEG feature subset and channel selection for performance enhancement of novice visual artists", Biomedical Signal Processing and Control, vol. 43, pp. 117-129, May 2018, https://doi.org/10.¬1016/j.bspc.2018.02.017.
[23] K. Jurewicz, K. Paluch, E. Kublik, J. Rogala, M. Mikicin, A. Wróbel, "EEG-neurofeedback training of beta band (12–22 Hz) affects alpha and beta frequencies–A controlled study of a healthy population", Neuropsychologia, vol. 108, pp. 13-24, Jan. 2018, https://doi.org/10.1016/j.neuropsych¬ologi¬a.20¬1¬7.¬11.021.
[24] F. Motlagh, F. Ibrahim, R. Rashid, T. Seghatoleslam, H. Habil, "Investigation of brain electrophysiological properties among heroin addicts: quantitative eeg and event‐related potentials", Journal of Neuroscience Research, vol. 95, no. 8, pp. 1633-1646, Aug. 2017, https://doi.org/https://doi.or¬g/10.1¬002/jnr.23988.
[25] S. Shete, R. Shriram, "Comparison of sub-band decompo¬sition and reconstruction of EEG signal by daubechies9 and symlet9 wavelet", Proceeding of the IEEE/CSNT, pp. 856-861, Bhopal, India, April 2014, https://doi.org/10.1¬109/CSNT.2014.178.
[26] I.H. Franken, C.J. Stam, V.M. Hendriks, W.V.D. Brink, "Neurophysiological evidence for abnormal cognitive processing of drug cues in heroin dependence", Psychopharmacology, vol. 170, pp. 205-212, Nov. 2003, https://doi.org/ https://doi.org/10.1007/s00213-003-1542-7.
[27] B. Hu, Q. Dong, Y. Hao, Q. Zhao, J. Shen, F. Zheng, "Effective brain network analysis with resting-state EEG data: A comparison between heroin abstinent and non-addicted subjects", Journal of Neural Engineering, vol. 14, no. 4, Article Paper: 046002, May 2017, https://doi.org/1¬0.108¬8/1741-2552/aa6c6f.
[28] F. Motlagh, F. Ibrahim, R. Rashid, N. Shafiabady, T. Seghatoleslam, H. Habil, "Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents", Psychopharmacology, vol. 235, pp. 3273-3288, Oct. 2018, https://doi.org/10.1007/s00213-018-5035-0.
[29] M.Y. Badr, E.A. Gad, A.A. Mubarak, Y.A. El-Heneedy, A.M. Ibrahim, A.A.E. Belal, F.A.E. Deep, "Impact of tramadol and heroin abuse on electroencephalography structure and cognitive functions", Middle East Current Psychiatry, vol. 30, no. 1, Article Number: 92, Nov. 2023, https://doi.org/10.1186/s43045-023-00365-7.
[30] M. Seif, M.R. Yousefi, N. Behzadfar, "EEG spectral power analysis: A comparison between heroin dependent and control groups", Clinical EEG and Neuroscience, vol. 53, no. 4, pp. 307-315, Mar. 2022, -https://doi.org/10.1177/15¬5005¬94221089366.
[31] N. Accornero, M. Capozza, L. Pieroni, S. Pro, L. Davì, O. Mecarelli, "EEG mean frequency changes in healthy subjects during prefrontal transcranial direct current stimulation", Journal of Neurophysiology, vol. 112, no. 6, pp. 1367-1375, Sept. 2014, https://doi.org/10.1¬152/jn.000¬88.2¬014.
[32] C. Pappalettera, A. Cacciotti, L. Nucci, F. Miraglia, P.M. Rossini, F. Vecchio, "Approximate entropy analysis across electroencephalographic rhythmic frequency bands during physiological aging of human brain", Geroscience, vol. 45, no. 2, pp. 1131-1145, April 2023, https://doi.org/10.1007¬/s11357-022-00710-4.
[33] A.Delgado-Bonal, A. Marshak, "Approximate entropy and sample entropy: A comprehensive tutorial", Entropy, vol. 21, no. 6, Article Number: 541, May 2019, https://doi.org/10.¬3390¬/e21060541.
[34] V. Srinivasan, C. Eswaran, N. Sriraam, "Approximate entropy-based epileptic EEG detection using artificial neural networks", IEEE Trans. on information Technology in Biomedicine, vol. 11, no. 3, pp. 288-295, May 2007, https://doi.org/10.1109/TITB.2006.884369.
[35] U.R. Acharya, S.V. Sree, G. Swapna, R.J. Martis, J.S. Suri, "Automated EEG analysis of epilepsy: A review", Knowledge-Based Systems, vol. 45, pp. 147-165, June 2013, https://doi.org/10.1016/j.knosys.2013.02.014.
[36] E.Q. Wu, L.M. Zhu, W.M. Zhang, P.Y. Deng, B. Jia, S.D. Chen, H. Ren, G.R. Zhou, "Novel nonlinear approach for real-time fatigue EEG data: An infinitely warped model of weighted permutation entropy", IEEE Trans. on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2437-2448, June 2020, https://doi.org/10.1109/TITS.2¬019¬.2918438.
[37] X. Huang, H.L. Shang, D. Pitt, "Permutation entropy and its variants for measuring temporal dependence", Australian and New Zealand Journal of Statistics, vol. 64, no. 4, pp. 442-477, Dec. 2022, https://doi.org/10-.1111/anzs.12376.
[38] C. Bandt, "A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure", Entropy, vol. 19, no. 5, pp. 197, April 2017, https://doi.org/10.3390/e19050197.
[39] U.R. Acharya, H. Fujita, V.K. Sudarshan, S. Bhat, J.E. Koh, "Application of entropies for automated diagnosis of epilepsy using EEG signals: A review", Knowledge-Based Systems, vol. 88, pp. 85-96, Nov. 2015, https://doi.org/10¬.101¬6/j.¬knosys.2015.08.004.
[40] O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, "Wavelet entropy: A new tool for analysis of short duration brain electrical signals", Journal of Neuroscience Methods, vol. 105, no. 1, pp. 65-75, Jan. 2001, https://doi.org/10.1016/S0165-0270(00)00356-3.
[41] S. Moaveninejad, V. D'Onofrio, F. Tecchio, F. Ferracuti, S. Iarlori, A. Monteriù, C. Porcaro, "Fractal dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface", Computer Methods and Programs in Biomedicine, vol. 244, Article Number: 107944, Feb. 2024, https://doi.org/10.1016/j.cmpb.2023.107944.
[42] S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, P.R. White, "Signal processing techniques applied to human sleep EEG signals- A review", Biomedical Signal Processing and Control, vol. 10, pp. 21-33, March 2014, https://doi.org/10.1016/j.bspc.2013.12.003.
[43] Y. Li, Y. Zhou, S. Jiao, "Variable-step multiscale katz fractal dimension: A new nonlinear dynamic metric for ship-radiated noise analysis", Fractal Fract, vol. 8, no. 1, Article Number: 9, Jan. 2024, https://doi.org/10.3390/frac¬talfrac¬t8010009.
[44] U. Lal, A.V. Chikkankod, L. Longo, "Fractal dimensions and machine learning for detection of Parkinson’s disease in resting-state electroencep¬halography", Neural Comput and Applic, vol. 36, pp. 8257–8280, Feb. 2024, https://doi.org/10.1007/s00521-024-09521-4.
[45] L. Yang, J. He, D. Liu, W. Zheng, Z. Song, "EEG microstate features as an automatic recognition model of high-density epileptic EEG using support vector machine", Brain Sciences, vol. 12, no. 12, Article Number: 1731, Dec. 2022, https://doi.org/10.3390/brainsci12121731.
[46] C.T. Shi, "Signal pattern recognition based on fractal features and machine learning", Applied Sciences, vol. 8, no. 8, Article Number: 1327, Aug. 2018, https://doi.org/1¬0.3390/ap¬p8081327.
[47] A. Petrosian, "Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns", Proceedings of the IEEE/CBMS, pp. 212-217, Lubbock, TX, USA, June 1995, https://doi.or-g/10.110¬¬9/CBMS.19¬95.465426.
[48] G.B. So, H.R. So, G.G. Jin, "Enhancement of the box-counting algorithm for fractal dimension estimation", Pattern Recognition Letters, vol. 98, pp. 53-58, Oct. 2017, https://doi.org/10.1016/j.patrec.2017.08.022.
[49] J. Wu, X. Jin, S. Mi, J. Tang, "An effective method to compute the box-counting dimension based on the mathematical definition and intervals", Results in Engineering, vol. 6, Article Number: 100106, June 2020, https://doi.org/10.1016/j.rineng.2020.100106.
[50] K. Foroutan-Pour, P. Dutilleul, D.L. Smith, "Advances in the implementation of the box-counting method of fractal dimension estimation", Applied Mathematics and Computation, vol. 105, no. 2–3, pp. 195-210, Nov./Dec. 1999, https://doi.org/10.1016/S0096-3003(98)1¬0096-6.
[51] A. Wysokiński, E. Szczepocka, A. Szczakowska, "Improved cognitive performance, increased theta, alpha, beta and decreased delta powers after cognitive rehabilitation augmented with tDCS in a patient with post-COVID-19 cognitive impairment (brain-fog)", Psychiatry Research Case Reports, vol. 2, no. 2, Article Number: 100164, Dec 2023, https://doi.org/10.1016/j.psycr.2023.100164.
[52] C. Babiloni, F. Carducci, R. Lizio, F. Vecchio, A. Baglieri, S. Bernardini, E. Cavedo, A. Bozzao, C. Buttinelli, F. Esposito, F. Giubilei, A. Guizzaro, S. Marino, P. Montella, C.C. Quattrocchi, A. Redolfi, A. Soricelli, G. Tedeschi, R. Ferri, G. Rossi-Fedele, F. Ursini, F. Scrascia, F. Vernieri, T.J. Pedersen, H.G. Hardemark, P.M. Rossini, G.B. Frisoni, "Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease", Human Brain Mapping, vol. 34, no. 6, pp. 427-446, June 2013, https://doi.org/10.1002/hbm.22005.
[53] K. Belwafi, S. Gannouni, H. Aboalsamh, "An effective zeros-time windowing strategy to detect sensorimotor rhythms related to motor imagery EEG signals", IEEE Access, vol. 8, pp. 152669-152679, Aug. 2020, doi: 10.1109/ACCESS.2020.3017888.
[54] J.R. Stieger, S.A. Engel, B. He, "Continuous sensorimotor rhythm based brain computer interface learning in a large population", Scientific Data, vol. 8, Article Number: 98, April 2021, https://doi.org/10.1038/s41597-021-00883-1.
[55] A. Khosla, P. Khandnor, T. Chand, "A comparative analysis of signal processing and classification methods for different applications based on EEG signals", Biocybernetics and Biomedical Engineering, vol. 40, no. 2, pp. 649-690, April/June 2020 (https://doi.org/10.1016/j.bbe.2020.02.002
[56] W. Klimesch, "The frequency architecture of brain and brain body oscillations: An analysis", European Journal of Neuroscience, vol. 48, no. 7, pp. 2431-2453, Oct. 2018, https://doi.org/10.1111/ejn.14192.
[57] M. Deodato, D. Melcher, "Correlations between visual temporal resolution and individual alpha peak frequency: Evidence that internal and measurement noise drive null findings", Journal of Cognitive Neuroscience, vol. 36, no. 4, pp. 590-601, April 2024, https://doi.org/10.11¬62/jocn-a-01993.
[58] A. Mierau, M. Felsch, T. Hülsdünker, J. Mierau, P. Bullermann, B. Weiß, H.K. Strüder, "The interrelation between sensorimotor abilities, cognitive performance and individual EEG alpha peak frequency in young children", Clinical Neurophysiology, vol. 127, no. 1, pp. 270-276, Jan. 2016, https://doi.org/10.1016/j.clinph.2015.03.008.
[59] O. Forbes, P.E. Schwenn, P.P.Y. Wu, E. Santos-Fernandez, H.B. Xie, J. Lagopoulos, L.T. McLoughlin, D.D. Sacks, K. Mengersen, D.F. Hermens, "EEG-based clusters differentiate psychological distress, sleep quality and cognitive function in adolescents", Biological Psychology, vol. 173, Article Number: 108403, Sept. 2022, https://doi.org/10.1016/j.biopsycho.2022.108403.
[60] M. Shen, H. Niu, Q. Xia, B. Zou, Y. Zheng, Y. Zhao, L. Li, X. Liu, L. Zhang, "Automatic epileptic tissue localization through spatial pattern clustering of high frequency activity", IEEE Trans. on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 981-990, 2023, https://doi.org/10.1109/TNSRE.2023.3237226.
[61] U. Talukdar, S.M. Hazarika, J.Q. Gan, "Adaptation of Common Spatial Patterns based on mental fatigue for motor-imagery BCI", Biomedical Signal Processing and Control, vol. 58, Article Number: 101829, April 2020, https://doi.org/10.1016/j.bspc.2019.101829.
[62] A. Tobeiha, N. Behzadfar, M.R. Yousefi-Najafabadi, H. Mahdavi-Nasab, G. Shahgholian, "Choosing the distinguish¬ing frequency feature of people addicted to heroin from healthy while resting", Signal and Data Processing, vol. 19, no. 3, pp. 49-64, Dec. 2022, https://doi.org/10.525¬47/jsdp.19.3.49.
[63] I.H. Franken, C.J. Stam, V. M. Hendriks, W.V.D. Brink, "Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients", Neuropsychobiology, vol. 49, no. 2, pp. 105-110, June 2004, https://doi.org/10.1159/000076419.
[64] J. Luo, R. Yang, W. Yang, C. Duan, Y. Deng, J. Zhang, J. Chen, J. Liu, “Increased amplitude of low-frequency fluctuation in right angular gyrus and left superior occipital gyrus negatively correlated with heroin use”, Frontiers in Psychiatry, vol. 11, pp. 492, 2020, https://doi.org/ https://doi.org/10.3389/fpsyt.2020.00492.
[65] D.M. Davydov, A.G. Polunina, “Heroin abusers' performance on the Tower of London Test relates to the baseline EEG alpha2 mean frequency shifts”, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 7, pp. 1143-1152, 2004, https://doi.org/ https://doi.org/10.1016/j.pnpbp.2004.06.006.
[66] A.G. Polunina, D.M. Davydov, “EEG spectral power and mean frequencies in early heroin abstinence”, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 1, pp. 73-82, 2004, https://doi.org/10.1016/j.pnpbp.2003.09.022..
[67] J. Wang, R. Peng, Q. Liu, H. Peng, "A hybrid classification to detect abstinent heroin-addicted individuals using EEG microstates", IEEE Trans. on Computational Social Systems, vol. 9, no. 3, pp. 700-709, June 2022, https://doi.org/10.1109/TCSS.2021.3135425.