تعیین ویژگی متمایزکننده در پردازش سیگنال های مغزی: مطالعه موردی افراد معتاد به هروئین
عاطفه توبیها
1
(
دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
ندا بهزادفر
2
(
دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
محمد رضا یوسفی
3
(
دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
همایون مهدوی نسب
4
(
دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
غضنفر شاهقلیان
5
(
دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
)
کلید واژه: اعتیاد, تحلیل سیگنال مغزی, شاخص دیویس-بولدین, طیف توان, هروئین,
چکیده مقاله :
این پژوهش با هدف شناسایی و تعیین ویژگیهای متمایزکننده سیگنالهای مغزی در افراد معتاد به هروئین انجام شده است. سیگنالهای الکتروانسفالوگرام (EEG) از 16 کانال مغزی برای 15 فرد معتاد و 15 فرد سالم جمعآوری شده و ویژگیهای فرکانسی و غیرفرکانسی آنها با استفاده از شاخص دیویس -بولدین ارزیابی شده است. نتایج بهدستآمده نشان میدهد که در افراد معتاد به هروئین، توان فرکانسی زیرباند آلفای باال در کانال 1O کاهش یافته و آنتروپی تقریبی در کانال Cz افزایش پیدا کرده است. برای طبقه بندی دادهها و تشخیص افراد معتاد از سالم، از طبقهبند ماشین بردار پشتیبان استفاده شده است. دقت و صحت تشخیص در ویژگی آنتروپی تقریبی به ترتیب برابر با %91.50 و %91.15 و در ویژگی توان طیفی زیرباند آلفای کانال 1O به ترتیب %95.92 و %92.18 بهدست آمده است. نتایج این مطالعه نشان میدهد که ویژگیهای منتخب نقش مؤثری در تشخیص افراد معتاد به هروئین دارند و تحلیل سیگنالهای مغزی میتواند به درک بهتر تأثیرات مصرف هروئین بر فعالیتهای مغزی و همچنین بهبود روشهای درمانی و پیشگیری از اعتیاد کمک کند.
چکیده انگلیسی :
This study aims to identify and determine distinguishing features of brain signals in heroin-addicted individuals. Electroencephalogram (EEG) signals were collected from 16 brain channels for 15 addicted and 15 healthy individuals. Frequency and non-frequency features were evaluated using the Davies-Bouldin index. The results indicate that in heroin-addicted individuals, the frequency power in the upper alpha sub-band of the O1 channel decreased, while the approximate entropy in the Cz channel increased. To classify the data and distinguish addicted individuals from healthy ones, a Support Vector Machine (SVM) classifier was employed. The accuracy and precision of detection for approximate entropy were 91.50% and 91.15%, respectively, while for the upper alpha power of the O1 channel, they were 95.92% and 92.18%, respectively. The findings confirm the significance of selected features in distinguishing heroin-addicted individuals. The analysis of brain signals can provide a deeper understanding of the effects of heroin use on brain activity and contribute to improving treatment strategies and addiction prevention.
انتخاب ویژگی مناسب و اختصاصی در افراد معتاد و سالم بر اساس ویژگیهای فردی معتادان به هروئین و یا افراد سالم مبتنی بر یک روش انتخاب ویژگی
انتخاب ویژگی متمایز کننده از روش دیویس بولدین
تعیین ویژگی متمایز کننده برای تشخیص اعتیاد در سیگنالهای مغزی
بررسی ویژگیهای حوزه زمان و فرکانس برای شناسایی ویژگی متمایز کننده
معرفی یک پایگاه داده جدید در تشخیص اعتیاد مبتنی بر سیگنالهای مغزی
[1] S. Liu, S. Wang, M. Zhang, Y. Xu, Z. Shao, L. Chen, W. Yang, J. Liu, K. Yuan, "Brain responses to drug cues predict craving changes in abstinent heroin users: A preliminary study", NeuroImage, vol. 237, Article Number: 118169, Aug. 2021, https://doi.org/10.1016/j.neu¬roimage.20¬21.118169.
[2] Q. Li, Y. Wang, Y. Zhang, W. Li, W. Yang, J. Zhu, N. Wu, H. Chang, Y. Zheng, W. Qin, L. Zhao, K. Yuan, J. Liu, W. Wang, J. Tian, "Craving correlates with mesolimbic responses to heroin-related cues in short-term abstinence from heroin: an event-related fMRI study", Brain Reserch, vol. 1469, pp. 63-72, Aug. 2012, https://doi.org/10.1016/j.brainres.2012.06.024.
[3] M. Corominas-Roso, I. Ibern, M. Capdevila, R. Ramon, C. Roncero, J. Ramos-Quiroga, "Benefits of EEG-neurofeedback on the modulat¬ion of impulsivity in a sample of cocaine and heroin long-term abstinent inmates: a pilot study", International Journal of Offender Therapy and Comparative Criminology, vol. 64, no. 12, pp. 1275-1298, 2020, https://doi.org/10.1177/0306624X2090470.4.
[4] A. Al-Nafjan, "Feature selection of EEG signals in neuromarketing", PeerJ Computer Science, vol. 8, Article Number: e944, April 2022, https://doi.org/10.7717/peerj-cs.944.
[5] I. Ahmad, C. Yao, L. Li, Y. Chen, Z. Liu, I. Ullah, M. Shabaz, X. Wang, K. Huang, G. Li, G. Zhao, O.W. Samuel, S. Chen, "An efficient feature selection and explainable classification method for EEG-based epileptic seizure detection", Journal of Information Security and Applications, vol. 80, Article Number: 103654, Feb. 2024, https://doi.org/10.1016/j.jisa.2023.103654.
[6] N. Behzadfar, S. M. P. Firoozabadi, K. Badie, "Low-complexity discriminative feature selection from EEG before and after short-term memory task", Clinical EEG and Neuroscience, vol. 47, no. 4, pp. 291-297, Feb. 2016, https://doi.org/10.1177/1550059416633951.
[7] R. Nawaz, K.H. Cheah, H. Nisar, V.V. Yap, "Comparison of different feature extraction methods for EEG-based emotion recognition", Biocybernetics and Biomedical Engineering, vol. 40, no. 3, pp. 910-926, July/Sept. 2020, https://doi.org/10.1016/j.bbe.2020.04.005.
[8] M.N. Dar, M.U. Akram, R. Yuvaraj, S.G. Khawaja, M. Murugappan, "EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning", Computers in Biology and Medicine, vol. 144, Article Number: 105327, 2022, https://doi.org/10.1016/j.comp¬biomed.20¬22¬.10¬5327.
[9] F. Motlagh, F. Ibrahim, J.M. Menke, R. Rashid, T. Seghatoleslam, H. Habil, "Neuroelectrophysiological approaches in heroin addiction research: A review of literatures", Journal of Neuroscience Research, vol. 94, pp. 297–309, Jan. 2016, http://dx.doi.org/10.1002/jnr.23703.
[10] Z.M. Hira, D.F. Gillies, "A review of feature selection and feature extraction methods applied on microarray data", Advances in Bioinformatics, vol. 2015, Article Number: 98363, June 2015, https://doi.org/10.1155/2015/198363.
[11] R.V. Wankar, P. Shah, R. Sutar, "Feature extraction and selection methods for motor imagery EEG signals: A review", Proceeding of the IEEE/I2C2, pp. 1-9, Coimbatore, India, June 2017, https://doi.org/10.1109/I2C2.¬2017.8321¬831.
[12] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betan¬zos, J.M. Benítez, F. Herrera, "A review of microarray datasets and applied feature selection methods", Information Sciences, vol. 282, pp. 111-135, Oct. 2014, https://doi.org/10.1016/j.ins.2014.05.042.
[13] W. Chen, Y. Cai, A. Li, Y. Su, K. Jiang, "EEG feature selection method based on maximum information coefficient and quantum particle swarm", Scientific Reports, vol. 13, Article Number: 14515, Sept. 2023, https://doi.org/10.103¬8/s41¬598-023-41682-5.
[14] J.H. Gruzelier, "EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations", Neuroscience and Biobehavioral Reviews, vol. 44, pp. 159-182, 2014. https://doi.org/10.1016/j.neu¬biorev.2014.03.015.
[15] A. J. Shackman, B.W. McMenamin, J.S. Maxwell, L.L. Greischar, R.J. Davidson, "Identifying robust and sensitive frequency bands for interrogating neural oscillations", Neuroim¬ag¬e, vol. 51, no. 4, pp. 1319-1333, 2010, https://doi.org/10.1016/j.neuroimage.2010.03.037.
[16] M. Dorvashi, N. Behzadfar, G. Shahgholian, "Detection of fatigue from electroencephalogram signal during neurofeedback training", Signal and Data Processing, vol. 19, no. 3, pp. 163-174, 2022, https://doi.org/1-0.52¬547/jsdp.19.3.163.
[17] T, Zeng, S. Li, L. Wu, Z. Feng, X. Fan, J. Yuan, X. Wang, J. Meng, H. Ma, G. Zeng, C. Kang, J. Yang, "A comparison study of impulsiveness, cognitive function, and P300 components between gamma-hydroxybutyrate and heroin-addicted patients: preliminary findings, Frontiers in Human Neuroscience, vol. 16, Article Number: 16:835922, April 2022, https://doi.org/10.3389/fnhum.2022.835922.
[18] H. Zeng, B. Yang, X. Gu, Y. Li, X. Xia, S. Gao, "CNN-based EEG classification method for drug use detection", Proceedings of the ICCPR, pp. 418-423, Beijing China, Nov. 2022, https://doi.org/10.11-45/35818¬07.3581868.
[19] X. Liang, Y. Hao, Z. Xu, N. Li, Q. Zhao, "Identifying abstinent heroin addicts on the basis of single channel’s ERP and behavioral data in the gambling task", Proceeding of the IEEE/BIBM, pp. 650-656, Seoul, Korea (South), Dec. 2020, https://doi.org/10.1109/BIBM49941.2020.9313164.
[20] G.Y. Wang, R. Kydd, T.A. Wouldes, M. Jensen, B.R. Russell, "Changes in resting EEG following methadone treatment in opiate addicts", Clinical Neurophysiology, vol. 126, no. 5, pp. 943-950, May 2015, https://doi.o¬rg/1¬0¬.1016/j.cl¬inph.2014.08¬.0¬21.
[21] A. Turnip, K.D. Esti, M.F. Amri, A.I. Simbolon, M.A. Suhendra, S. IsKandar, F.F. Wirakusumah, "Detection of drug effects on brain activity using EEG-P300 with similar stimuli”, IOP Conference Series: Materials Science and Engineering, Article Number: 012042, June 2017, https://doi.org/10.1088/1757-89¬9X/2-20/1/012042.
[22] N. Shourie, M. Firoozabadi, K. Badie, "Neurofeedback training protocols based on spectral EEG feature subset and channel selection for performance enhancement of novice visual artists", Biomedical Signal Processing and Control, vol. 43, pp. 117-129, May 2018, https://doi.org/10.¬1016/j.bspc.2018.02.017.
[23] K. Jurewicz, K. Paluch, E. Kublik, J. Rogala, M. Mikicin, A. Wróbel, "EEG-neurofeedback training of beta band (12–22 Hz) affects alpha and beta frequencies–A controlled study of a healthy population", Neuropsychologia, vol. 108, pp. 13-24, Jan. 2018, https://doi.org/10.1016/j.neuropsych¬ologi¬a.20¬1¬7.¬11.021.
[24] F. Motlagh, F. Ibrahim, R. Rashid, T. Seghatoleslam, H. Habil, "Investigation of brain electrophysiological properties among heroin addicts: quantitative eeg and event‐related potentials", Journal of Neuroscience Research, vol. 95, no. 8, pp. 1633-1646, Aug. 2017, https://doi.org/https://doi.or¬g/10.1¬002/jnr.23988.
[25] S. Shete, R. Shriram, "Comparison of sub-band decompo¬sition and reconstruction of EEG signal by daubechies9 and symlet9 wavelet", Proceeding of the IEEE/CSNT, pp. 856-861, Bhopal, India, April 2014, https://doi.org/10.1¬109/CSNT.2014.178.
[26] I.H. Franken, C.J. Stam, V.M. Hendriks, W.V.D. Brink, "Neurophysiological evidence for abnormal cognitive processing of drug cues in heroin dependence", Psychopharmacology, vol. 170, pp. 205-212, Nov. 2003, https://doi.org/ https://doi.org/10.1007/s00213-003-1542-7.
[27] B. Hu, Q. Dong, Y. Hao, Q. Zhao, J. Shen, F. Zheng, "Effective brain network analysis with resting-state EEG data: A comparison between heroin abstinent and non-addicted subjects", Journal of Neural Engineering, vol. 14, no. 4, Article Paper: 046002, May 2017, https://doi.org/1¬0.108¬8/1741-2552/aa6c6f.
[28] F. Motlagh, F. Ibrahim, R. Rashid, N. Shafiabady, T. Seghatoleslam, H. Habil, "Acute effects of methadone on EEG power spectrum and event-related potentials among heroin dependents", Psychopharmacology, vol. 235, pp. 3273-3288, Oct. 2018, https://doi.org/10.1007/s00213-018-5035-0.
[29] M.Y. Badr, E.A. Gad, A.A. Mubarak, Y.A. El-Heneedy, A.M. Ibrahim, A.A.E. Belal, F.A.E. Deep, "Impact of tramadol and heroin abuse on electroencephalography structure and cognitive functions", Middle East Current Psychiatry, vol. 30, no. 1, Article Number: 92, Nov. 2023, https://doi.org/10.1186/s43045-023-00365-7.
[30] M. Seif, M.R. Yousefi, N. Behzadfar, "EEG spectral power analysis: A comparison between heroin dependent and control groups", Clinical EEG and Neuroscience, vol. 53, no. 4, pp. 307-315, Mar. 2022, -https://doi.org/10.1177/15¬5005¬94221089366.
[31] N. Accornero, M. Capozza, L. Pieroni, S. Pro, L. Davì, O. Mecarelli, "EEG mean frequency changes in healthy subjects during prefrontal transcranial direct current stimulation", Journal of Neurophysiology, vol. 112, no. 6, pp. 1367-1375, Sept. 2014, https://doi.org/10.1¬152/jn.000¬88.2¬014.
[32] C. Pappalettera, A. Cacciotti, L. Nucci, F. Miraglia, P.M. Rossini, F. Vecchio, "Approximate entropy analysis across electroencephalographic rhythmic frequency bands during physiological aging of human brain", Geroscience, vol. 45, no. 2, pp. 1131-1145, April 2023, https://doi.org/10.1007¬/s11357-022-00710-4.
[33] A.Delgado-Bonal, A. Marshak, "Approximate entropy and sample entropy: A comprehensive tutorial", Entropy, vol. 21, no. 6, Article Number: 541, May 2019, https://doi.org/10.¬3390¬/e21060541.
[34] V. Srinivasan, C. Eswaran, N. Sriraam, "Approximate entropy-based epileptic EEG detection using artificial neural networks", IEEE Trans. on information Technology in Biomedicine, vol. 11, no. 3, pp. 288-295, May 2007, https://doi.org/10.1109/TITB.2006.884369.
[35] U.R. Acharya, S.V. Sree, G. Swapna, R.J. Martis, J.S. Suri, "Automated EEG analysis of epilepsy: A review", Knowledge-Based Systems, vol. 45, pp. 147-165, June 2013, https://doi.org/10.1016/j.knosys.2013.02.014.
[36] E.Q. Wu, L.M. Zhu, W.M. Zhang, P.Y. Deng, B. Jia, S.D. Chen, H. Ren, G.R. Zhou, "Novel nonlinear approach for real-time fatigue EEG data: An infinitely warped model of weighted permutation entropy", IEEE Trans. on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2437-2448, June 2020, https://doi.org/10.1109/TITS.2¬019¬.2918438.
[37] X. Huang, H.L. Shang, D. Pitt, "Permutation entropy and its variants for measuring temporal dependence", Australian and New Zealand Journal of Statistics, vol. 64, no. 4, pp. 442-477, Dec. 2022, https://doi.org/10-.1111/anzs.12376.
[38] C. Bandt, "A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure", Entropy, vol. 19, no. 5, pp. 197, April 2017, https://doi.org/10.3390/e19050197.
[39] U.R. Acharya, H. Fujita, V.K. Sudarshan, S. Bhat, J.E. Koh, "Application of entropies for automated diagnosis of epilepsy using EEG signals: A review", Knowledge-Based Systems, vol. 88, pp. 85-96, Nov. 2015, https://doi.org/10¬.101¬6/j.¬knosys.2015.08.004.
[40] O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Başar, "Wavelet entropy: A new tool for analysis of short duration brain electrical signals", Journal of Neuroscience Methods, vol. 105, no. 1, pp. 65-75, Jan. 2001, https://doi.org/10.1016/S0165-0270(00)00356-3.
[41] S. Moaveninejad, V. D'Onofrio, F. Tecchio, F. Ferracuti, S. Iarlori, A. Monteriù, C. Porcaro, "Fractal dimension as a discriminative feature for high accuracy classification in motor imagery EEG-based brain-computer interface", Computer Methods and Programs in Biomedicine, vol. 244, Article Number: 107944, Feb. 2024, https://doi.org/10.1016/j.cmpb.2023.107944.
[42] S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C.M. Hill, P.R. White, "Signal processing techniques applied to human sleep EEG signals- A review", Biomedical Signal Processing and Control, vol. 10, pp. 21-33, March 2014, https://doi.org/10.1016/j.bspc.2013.12.003.
[43] Y. Li, Y. Zhou, S. Jiao, "Variable-step multiscale katz fractal dimension: A new nonlinear dynamic metric for ship-radiated noise analysis", Fractal Fract, vol. 8, no. 1, Article Number: 9, Jan. 2024, https://doi.org/10.3390/frac¬talfrac¬t8010009.
[44] U. Lal, A.V. Chikkankod, L. Longo, "Fractal dimensions and machine learning for detection of Parkinson’s disease in resting-state electroencep¬halography", Neural Comput and Applic, vol. 36, pp. 8257–8280, Feb. 2024, https://doi.org/10.1007/s00521-024-09521-4.
[45] L. Yang, J. He, D. Liu, W. Zheng, Z. Song, "EEG microstate features as an automatic recognition model of high-density epileptic EEG using support vector machine", Brain Sciences, vol. 12, no. 12, Article Number: 1731, Dec. 2022, https://doi.org/10.3390/brainsci12121731.
[46] C.T. Shi, "Signal pattern recognition based on fractal features and machine learning", Applied Sciences, vol. 8, no. 8, Article Number: 1327, Aug. 2018, https://doi.org/1¬0.3390/ap¬p8081327.
[47] A. Petrosian, "Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns", Proceedings of the IEEE/CBMS, pp. 212-217, Lubbock, TX, USA, June 1995, https://doi.or-g/10.110¬¬9/CBMS.19¬95.465426.
[48] G.B. So, H.R. So, G.G. Jin, "Enhancement of the box-counting algorithm for fractal dimension estimation", Pattern Recognition Letters, vol. 98, pp. 53-58, Oct. 2017, https://doi.org/10.1016/j.patrec.2017.08.022.
[49] J. Wu, X. Jin, S. Mi, J. Tang, "An effective method to compute the box-counting dimension based on the mathematical definition and intervals", Results in Engineering, vol. 6, Article Number: 100106, June 2020, https://doi.org/10.1016/j.rineng.2020.100106.
[50] K. Foroutan-Pour, P. Dutilleul, D.L. Smith, "Advances in the implementation of the box-counting method of fractal dimension estimation", Applied Mathematics and Computation, vol. 105, no. 2–3, pp. 195-210, Nov./Dec. 1999, https://doi.org/10.1016/S0096-3003(98)1¬0096-6.
[51] A. Wysokiński, E. Szczepocka, A. Szczakowska, "Improved cognitive performance, increased theta, alpha, beta and decreased delta powers after cognitive rehabilitation augmented with tDCS in a patient with post-COVID-19 cognitive impairment (brain-fog)", Psychiatry Research Case Reports, vol. 2, no. 2, Article Number: 100164, Dec 2023, https://doi.org/10.1016/j.psycr.2023.100164.
[52] C. Babiloni, F. Carducci, R. Lizio, F. Vecchio, A. Baglieri, S. Bernardini, E. Cavedo, A. Bozzao, C. Buttinelli, F. Esposito, F. Giubilei, A. Guizzaro, S. Marino, P. Montella, C.C. Quattrocchi, A. Redolfi, A. Soricelli, G. Tedeschi, R. Ferri, G. Rossi-Fedele, F. Ursini, F. Scrascia, F. Vernieri, T.J. Pedersen, H.G. Hardemark, P.M. Rossini, G.B. Frisoni, "Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer's disease", Human Brain Mapping, vol. 34, no. 6, pp. 427-446, June 2013, https://doi.org/10.1002/hbm.22005.
[53] K. Belwafi, S. Gannouni, H. Aboalsamh, "An effective zeros-time windowing strategy to detect sensorimotor rhythms related to motor imagery EEG signals", IEEE Access, vol. 8, pp. 152669-152679, Aug. 2020, doi: 10.1109/ACCESS.2020.3017888.
[54] J.R. Stieger, S.A. Engel, B. He, "Continuous sensorimotor rhythm based brain computer interface learning in a large population", Scientific Data, vol. 8, Article Number: 98, April 2021, https://doi.org/10.1038/s41597-021-00883-1.
[55] A. Khosla, P. Khandnor, T. Chand, "A comparative analysis of signal processing and classification methods for different applications based on EEG signals", Biocybernetics and Biomedical Engineering, vol. 40, no. 2, pp. 649-690, April/June 2020 (https://doi.org/10.1016/j.bbe.2020.02.002
[56] W. Klimesch, "The frequency architecture of brain and brain body oscillations: An analysis", European Journal of Neuroscience, vol. 48, no. 7, pp. 2431-2453, Oct. 2018, https://doi.org/10.1111/ejn.14192.
[57] M. Deodato, D. Melcher, "Correlations between visual temporal resolution and individual alpha peak frequency: Evidence that internal and measurement noise drive null findings", Journal of Cognitive Neuroscience, vol. 36, no. 4, pp. 590-601, April 2024, https://doi.org/10.11¬62/jocn-a-01993.
[58] A. Mierau, M. Felsch, T. Hülsdünker, J. Mierau, P. Bullermann, B. Weiß, H.K. Strüder, "The interrelation between sensorimotor abilities, cognitive performance and individual EEG alpha peak frequency in young children", Clinical Neurophysiology, vol. 127, no. 1, pp. 270-276, Jan. 2016, https://doi.org/10.1016/j.clinph.2015.03.008.
[59] O. Forbes, P.E. Schwenn, P.P.Y. Wu, E. Santos-Fernandez, H.B. Xie, J. Lagopoulos, L.T. McLoughlin, D.D. Sacks, K. Mengersen, D.F. Hermens, "EEG-based clusters differentiate psychological distress, sleep quality and cognitive function in adolescents", Biological Psychology, vol. 173, Article Number: 108403, Sept. 2022, https://doi.org/10.1016/j.biopsycho.2022.108403.
[60] M. Shen, H. Niu, Q. Xia, B. Zou, Y. Zheng, Y. Zhao, L. Li, X. Liu, L. Zhang, "Automatic epileptic tissue localization through spatial pattern clustering of high frequency activity", IEEE Trans. on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 981-990, 2023, https://doi.org/10.1109/TNSRE.2023.3237226.
[61] U. Talukdar, S.M. Hazarika, J.Q. Gan, "Adaptation of Common Spatial Patterns based on mental fatigue for motor-imagery BCI", Biomedical Signal Processing and Control, vol. 58, Article Number: 101829, April 2020, https://doi.org/10.1016/j.bspc.2019.101829.
[62] A. Tobeiha, N. Behzadfar, M.R. Yousefi-Najafabadi, H. Mahdavi-Nasab, G. Shahgholian, "Choosing the distinguish¬ing frequency feature of people addicted to heroin from healthy while resting", Signal and Data Processing, vol. 19, no. 3, pp. 49-64, Dec. 2022, https://doi.org/10.525¬47/jsdp.19.3.49.
[63] I.H. Franken, C.J. Stam, V. M. Hendriks, W.V.D. Brink, "Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients", Neuropsychobiology, vol. 49, no. 2, pp. 105-110, June 2004, https://doi.org/10.1159/000076419.
[64] J. Luo, R. Yang, W. Yang, C. Duan, Y. Deng, J. Zhang, J. Chen, J. Liu, “Increased amplitude of low-frequency fluctuation in right angular gyrus and left superior occipital gyrus negatively correlated with heroin use”, Frontiers in Psychiatry, vol. 11, pp. 492, 2020, https://doi.org/ https://doi.org/10.3389/fpsyt.2020.00492.
[65] D.M. Davydov, A.G. Polunina, “Heroin abusers' performance on the Tower of London Test relates to the baseline EEG alpha2 mean frequency shifts”, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 7, pp. 1143-1152, 2004, https://doi.org/ https://doi.org/10.1016/j.pnpbp.2004.06.006.
[66] A.G. Polunina, D.M. Davydov, “EEG spectral power and mean frequencies in early heroin abstinence”, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 1, pp. 73-82, 2004, https://doi.org/10.1016/j.pnpbp.2003.09.022..
[67] J. Wang, R. Peng, Q. Liu, H. Peng, "A hybrid classification to detect abstinent heroin-addicted individuals using EEG microstates", IEEE Trans. on Computational Social Systems, vol. 9, no. 3, pp. 700-709, June 2022, https://doi.org/10.1109/TCSS.2021.3135425.