Induction of Resistance to Salinity Stress Using Biological Elicitor and Zeolite in Strawberry Plant
Subject Areas : StressEilnaz Balagar 1 , Vahid Abdossi 2 , وحید زرین نیا 3 , Ali Mohammadi Torkashvand 4 , Hossein Nastari Nasrabadi 5
1 -
2 -
3 - دانشگاه آزاد اسلامی واحد علوم و تحقیقات
4 - Department of Agricultural Management, College of Agriculture and food industry, Agronomy and Horticulture Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 -
Keywords: Elicitor, Salinity, Strawberry, Zeolite.,
Abstract :
Salinity is one of the most important factors limiting the production of agricultural products in the world. Biological elicitor and zeolite have a significant effect in reducing the effects of salinity stress. The purpose of this experiment is to induce resistance against salinity stress along with the biological elicitor of Penicillium sp and zeolite in Camarosa strawberry. The experiment was conducted as a factorial in a completely randomized design with three replications in a hydroponic greenhouse in Torbat-e Jam. The test treatments include a mixture of cocopeat, perlite and zeolite as a growing medium with ratios of 50:50:0 as control and 50:25:25 and 50:15:35% and fungal elicitor with concentrations of zero, 4000, 8000 and salt treatment with Zero, 20 and 40 mM concentrations. With the increase in salinity, all the vegetative traits of the present study showed a significant decrease, and the trait of malondialdehyde, which is an indicator of lipid peroxidation during stress, increased. A significant effect was observed in different concentrations of elicitor and growing medium. The highest number of fruits and root dry weight were obtained in the growing medium of 35% zeolite with 8000 ppm elicitor. The highest number of flowers and fresh weight of roots were observed in the growing medium of 25% zeolite and elicitor at a concentration of 8000 ppm. It seems elicitors through the synthesis of secondary metabolites and zeolite due to its high cation exchange capacity play an important role in reducing salinity stress. The best effects of treatments were cocopeat, perlite and zeolite 50:25:25 and 50:15:35% and elicitor concentration 8000 ppm, which in most cases significantly reduced the effects of salinity.
1) سلمانی¬زاده کرانی، ج.، م، هنرور. و بایادایی سامانی، ر. 1389. مطالعه اثر زئولیت و نوع قلمه در ریشه زائی قلمه گل کاغذی. پنجمین همایش ملی ایده های نو در کشاورزی اصفهان. https://civilica.com/doc/128999
2) عابدي کوپایی، ج.، چهره راضی، ع. و دادوند، ف. 1402. کاربرد جاذبهاي گرافنی و زئولیتی در شور يزدایی آب. نشریه علوم آب و خاك، 27(4): 49-37.
3) صفی¬خانی، س.، خوشبخت، ک.، چایی¬چی، م.، امینی، ع. و متشرع زاده، ب. 1398. تاثیر کاربرد زئولیت بر خصوصیات رویشی و فیزیولوژیک گیاه خارمریم (Silybum marianum) در شرایط تنش شوری. علوم گیاهان زراعی ایران،50(3): 77-63.
4) گوهری، غ. و بهرامی، م ک. 1399. اثر کاربرد محرک زیستی کیتوزان بر صفات رشدی و عملکرد اسانس بادرشبی (Dracocephalium moldavica L.) در شرایط آبیاری با آب شور. دانش کشاورزی و تولید پایدار، 30(1): 169-155.
5) نعمتی میرک، ی. 1394. استفاده از نانو ذرات اسید سالیسیلیک كايتوسان در كاهش اثرات تنش شوری روی میوه توتفرنگی رقم کاماروزا. پایان نامهی کارشناسی ارشد. دانشگاه شاهد تهران.
6) Attia, M.S., Osman, M.S., Mohamed, A.S., Mahgoub, H.A., Garada, M.O., Abdelmouty, E.S. and Latef, A.A.H.A. 2021. Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2): 388.
7) Bautista-Baños, S., Hernández-Lauzardo, A.N. and Velázquez-del Valle, M.G. 2006 Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection, 25: 108-118.
8) Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F. and Morshedloo, M.R. 2019. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products, 135: 311-320.
9) Bozorgi, H.R., Bidargh, S., Azarpour, E., Khosravi Danesh, R. and moraditochaee, M. 2012. Effects of naturalzeolite application under foliar spraying with humic acid on yield and yoeld components of cucumber (Cucumissativus L.). International Journal of Agriculture and Crop Sciences, 20(4): 1485-1488.
10) Balusamy, S. R., Rahimi, S., Sukweenadhi, J., Sunderraj, S., Shanmugam, R., Thangavelu, L. and Perumalsamy, H. 2022. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polymers, 284: 119189.
11) Chakraborty, N., Sarkar, A. and Acharya, K. 2019. Elicitor‐mediated amelioration of abiotic stress in plants. Molecular plant abiotic stress: biology and biotechnology, 105-122. https://doi.org/10.1002/9781119463665.ch6.
12) Chartzoulakis K., Patakas A., Kofidis G., Bosabalidis A. and Nastou A. 2002. Water stress affects leaf anatomy, gas exchange, water relation and growth of two avocado cultivars. Scientia Hortoculturae. 95: 39-50.
13) Farkya, S., Julka, A., Mehra, R., Datta, V., Srivastava, A.K. and Bisaria, V.S. 2005. Enhanced production of secondary metabolites by biotic elicitors in plant cell suspension cultures. In 5th Asia Pacific Biochemical Engineering Conference. Jeju Island, Korea.
14) Farooq, H., Bashir, M.A., Khalofah, A., Khan, K.A., Ramzan, M., Hussain, A., Wu, L., Simunek, L., Aziz, I., Samdani, M.S., Alghanem, S.M., Alhaithloul, H.A., McGiffen, M. and Ahmad, Z. 2021. Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environmental Bulletin, 30: 3557-3564.
15) García Enciso, E.L., Robledo Olivo, A., Benavides Mendoza, A., Solís Gaona, S. and González Morales, S. 2018. Effect of elicitors of natural origin on tomato plants subjected to biotic stress. Revista mexicana de ciencias agrícolas, 9: 4212-4221. https://doi.org/10.29312/remexca.v0i20.991
16) Golkar, P., Taghizadeh, M. and Yousefian, Z. 2019. The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell, Tissue and Organ Culture (PCTOC), 137(3): 575-585.
17) Gonzalez, L. and Gonzalez-Vilar M. 2003. Determination of relative water content. In: J. Manuel and R. Goger (eds.). Handbook of plant ecophysiology techniques. Kluwer Academic Publishers, London. 207-212
18) Hnilickova, H., Kraus, K., Vachova, P. and Hnilicka, F. 2021. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants, 10(5): 845. https://doi.org/10.3390/plants10050845
19) Jamali, B., Eshghi, S. and Kholdebarin, B. 2014. Response of strawberry ‘Selva’ plants on foliar application of sodium nitroprusside (nitric oxide donor) under saline conditions. Journal of Horticultural Research, 22(2): 139-150.
20) Krishnamoorthy, N., Prasad, L.N., Kumar, C.P., Subedi, B., Abraha, H.B. and Sathishkumar, V.E. 2021. Rice leaf diseases prediction using deep neural networks with transfer learning. Environmental Research, 198: 111275. https://doi.org/10.1016/j.envres.2021.111275
21) Mahmoud, A.W.M. and Swaety, H.M. 2020. Comparison between commercial and nano NPK in presence of nano zeolite on sage plant yield and its components under water stress. Agriculture (Pol'nohospodarstvo), 66(1): 24-39. DOI: 10.2478/agri-2020-0003
22) Mansoury, M.M.F. 2000. Nitrogen containing compounds and adaption of plants to salinity stress. Biologia Plantarum, 43(4): 491-500. DOI:10.1023/A:1002873531707
23) Ntanos, E, Kekelis, P., Assimakopoulou, A., Gasparatos, D., Denaxa, N.K., Tsafouros, A. and Roussos, P.A. 2021. Amelioration Effects against Salinity Stress in Strawberry by Bentonite–Zeolite Mixture, Glycine Betaine, and Bacillus amyloliquefaciens in Terms of Plant Growth, Nutrient Content, Soil Properties, Yield, and Fruit Quality Characteristics. Applied Sciences, 11(19): 87-96. https://doi.org/10.3390/app11198796
24) Ohkawa, H., Ohishi, N. and Yagi, K. 1979. Assay of lipid peroxides in tissues by thiobarbituric acid reaction. Analytical
Biochemistry, 95(2): 351-358. DOI: 10.1016/0003-2697(79)90738-3 25) Polite, E., Karuca, M., Demire, H. and Naci Onus, A. 2004. Use of natural zeolite (Clinoptilolite) in agriculture. J. F. Orna. Plant Res. 12: 183-189.
26) Rahimi, E., Nazari, F., Javadi, T., Samadi, S. and da Silva, J.A.T. 2021. Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. Journal of environmental management. 285:112-142. DOI: 10.1016/j.jenvman.2021.112142
27) Saini, S., Kumar, P., Sharma, N., Sharma, N. and Balachandar, D. 2021. Nano-enabled Zn fertilization against conventional Zn analogues in strawberry (Fragaria× ananassa Duch.). Scientia Horticulturae, 282(2): 110016.
28) Sajyan, T.K., Allaw, W., Shaban, N. and Sassine, Y.N. 2019. Effect of exogenous application of glycine betaine on tomato plants subjected to salt stress. Acta Hortic. 1253: 41-48.
29) Semida, W.M., Abdelkhalik, A., Rady, M.O.A., Marey, R.A. and Abd El-Mageed, T.A. 2020. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci. Hortic. 272:109580. doi: 10.1016/j.scienta.2020.109580
30) Shahin, Y. and R. Valiollah. 2009. Effects of row spacing and seeding rates on some agronomical traits of spring canola (Brassica napus L.) cultivars. J. Cent. Eur. Agron. 10(1): 115-122.
31) Shams Peykani, L. and Farzami Sepehr, M. 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Iranian Journal of Plant Physiology, 9(1): 2661-2670. DOI: 10.22034/ijpp.2018.545906
32) Turhan, E. and Eris, A. 2005. Changes of micronutrients, dry weight, and chlorophyll contents in strawberry plants under salt stress conditions. Communications in Soil Science and Plant Analysis, 36(7-8): 1021-1028.
33) Vafadar, F. and Ehsanzadeh, P. 2023. Synergistic effects of calcium and melatonin on physiological and phytochemical attributes of Dracocephalum kotschyi genotypes under salinity stress. Physiologia Plantarum, 175(3): e13912. https://doi.org/10.1111/ppl.13912
34) Wang, Y.,An, T., Dun, X., Wang, X., Wang, H., Wang, K., Tian, Z., Shi, J. and Deng, J .2022.Genetic dissection of ranch architecture in oilseed rape (Brassica napus L.) germplasm. Plant Breeding, 13:1053459. hpps://doi.org/10.3389/fpls.2022 1053459
35) Zhao, J., Davis, L.C. and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4): 283–333. DOI: 10.1016/j.biotechadv.2005.01.003#3