Investigation on the reduction of Orvego® fungicide (ametoctradin + dimethomorph) residue levels used to control tomato downy mildew disease in Mazandaran province
Subject Areas : Plant ProtectionMohsen Morowati 1 , Abbas Ali Ravanlou 2 , Vahideh Mahdavi 3 , ُSeyed Ali Reza Dalili 4
1 - Associate Professor, Pesticides Research Department. Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 - Assistant Professor, Plant Diseases Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran
3 - Associate Professor, Pesticides Research Department. Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
4 - Assistant Professor, Plant Protection Research Department, Agricultural and Natural Resources Research Centre of Mazandaran Province, Agricultural Research, Education and Extension Organization, Mazandaran, Sari, Iran
Keywords: chemical control, LC-MS/MS, MRL, Orvego®, pesticide residues,
Abstract :
In order to measure the residue of Orvego® fungicide (ametoctradin+dimethomorph) which was used by the dose of 80 ml/100 liters of water (the dose recommended by the producing company), 15 samples of treated tomatoes (5 samples in 3 replications) and one control sample were collected at 1, 2, 3, 5 and 8 days after spraying. Extraction of pesticides was carried out according to the national standard of Iran "measurement of pesticide residues" which recommends to use QuEChERS method of extraction. Pesticides were analyzed by LC-MS/MS and the determined values were compared with the national and Codex MRLs. The results obtained show that according to the MRL of ametoctradin, which is 1.5 mg/kg (Codex), the mean residue detected in the samples was less than the MRL one day after spraying. Dimethomorph has a MRL of 3 mg/kg (National), and the mean residue detected in the samples was 0.076 mg/kg, one day after spraying which is less than the MRL. According to the recommendation of the manufacturer of Orvego® and the references studied the pre-harvest interval (PHI) of Orvego® (Ametoctradin+Dimethomorph) is 1 day, which is confirmed in the present research. Therefore Orvego® used at a rate of 80 ml/100 liters with the PHI of one day could be recommended to control tomato downy mildew disease.
ايماني، س.، طالبي جهرمي، خ.، شجاعي، م.، و كمالي، ك. 1385. اندازه گيري باقيمانده هشت نوع آفتكش مورد استفاده در گلخانههاي خيار و گوجهفرنگي به روش تجزيه جمعي آنها. خلاصه مقالات هفدهمين كنگره گياهپزشكي ايران، تهران. جلد اول: آفات. ص 147.
صلاحی اردکانی، ع.، مروتی، م. و انتصاری، م. 1391. باقیمانده آفتکشهای اندوسولفان و دیازینون در مزارع گوجهفرنگی و خیار سبز استان کهگیلویه و بویراحمد. مهندسی نتیک و ایمنی زیستی، 1(2): 120-113.
مروتی، م. و نعمتاللهی، م. ر. 1393. بررسی میزان باقیمانده چهار نوع حشرهکش در خیار گلخانهای استان اصفهان. مجله آفات و بیماریهای گیاهی. 12(1): 23-11.
مروتی، م.، مهدوی، و.، حیدری، ا.، نوربخش، ر.، فرآورده، ل. و حیدری علیزاده، ب. 1397. باقیمانده آفتکشها در محصولات کشاورزی (مخاطرات، مقررات و حدود مجاز آنها). ناشر موسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، صفحات 267.
هادیان، ز. و عزیزی، م. ح. 1385. ارزیابی میزان باقیمانده انواع سموم آفتکش به روش کروماتوگرافی گازی-طیفسنجی جرمی در برخی سبزیهای عرضه شده در میدان اصلی ترهبارشهر تهران در سال 1384.فصلنامه علوم تغذیه و صنایع غذائی ایران. 1(2): 13-17.
هادیان، ز. و عزیزی، م. ح. 1387. تعيين ميزان باقيمانده انواع آفتكشها در برخي از سبزيجات تازه و گلخانهاي. مجله علوم و فنون کشاورزی و منابع طبیعی. 12(43):204-195.
Abd-Elhaleem, A. 2020. Pesticides residues in tomato and tomato products marketed in Majmaah province, KSA, and their impact on human health. Environmental Science and Pollution Research International, 27(8): 8526-8534. https://doi.org/10.1007/s11356-019-07573-x.
Andrade, G.C., Monteiro, S. H., Francisco, J. G., Figueiredo, L. A., Botelho, R.G., and Tornisielo, V.L. 2015. Liquid chromatography–electrospray ionization tandem mass spectrometry and dynamic multiple reaction monitoring method for determining multiple pesticide residues in tomato. Food Chemistry, 175:57–65. https://doi.org/10.1016/j.foodchem.2014.11.105.
Arias, L.A., Bojacá, C.R., Ahumada, D.A., and Schrevens, E. 2014. Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control, 35(1):213–217. https://doi.org/10.1016/j.foodcont.2013.06.046.
Bojaca, C.R., Arias, L.A., Ahumada, D.A., Casilimas, H.A., and Schrevens, E. 2013. Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control, 30(2):400–403. https://doi.org/10.1016/j.foodcont.2012.08.015.
Bhandari, G., Zomer, P., Atreya, K., Mol, H.G.J, Yang, X., and Geissen, V. 2019. Pesticide residues in Nepalese vegetables and potential health risks. Environment Research, 172:511–521. https://doi.org/10.1016/j.envres.2019.03.002 .
Anastassiadou, M., Giovanni, B., Alba, B., Carrasco Cabrera, L., Greco, L., Jarrah, S., Kazocina, A., Leuschner, R., Magrans, J.O., Miron, I., Nave, S., Pedersen, R., Reich, H., Rojas, A., Sacchi, A., Santos, M., Stanek, A., Theobald, A., Vagenende, B., and Verani, A. 2019. Review of the existing maximum residue levels for ametoctradin according to Article 12 of Regulation (EC) No 396/2005, European Food Safety Authority (EFSA).
Bakırcı, G.T., Acai, D.B Y., Bakırcı, F., and Ötleş, S. 2014. Pesticide Residues in Fruits and Vegetables from the Aegean Region, Turkey, Food Chemistry, 160:379-92. https://doi.org/10.1016/j.foodchem.2014.02.051.
Balkan, T. and Yilmaz, O. 2023. Determination of 301 pesticide residues in tropical fruits imported to Turkey using LC–MS/MS and GC-MS. Food Control, 147, 109576. https://doi.org/10.1016/j.foodcont.2022.109576.
Balkan, T. and Kara, K. 2023. Pesticide residues in sauce manufactured from agricultural products. International Journal of Agriculture, Environment and Food Sciences, 7(1): 131-135. https://doi.org/10.31015/jaefs.2023.1.16.
Balkan, T. and Yilmaz, O. 2022. Method validation, residue and risk assessment of 260 pesticides in some leafy vegetables using liquid chromatography coupled to tandem mass spectrometry, Food chemistry, 384, 132516. https://doi.org/10.1016/j.foodchem.2022.132516 .
Corrias, F., Atzei, A., Lai, C., Dedola, F., Ibba, E., Zedda, G., Canu, F. and Angioni, A. 2020. Effects of Industrial Processing on Pesticide Multiresidues Transfer from Raw Tomatoes to Processed Products. Foods, 9, 1497. https://doi.org/10.3390/foods9101497.
Damalas, C.A., and Eleftherohorinos, I.G. 2011. Pesticide exposure, safety issues and risk assessment indicators. International Journal of Environmental Research and Public Health, 8:1402–1419. https://doi.org/10.3390/ijerph8051402.
Eslami, Z., Mahdavi, V., and Tajdar-oranj, B. 2021. Probabilistic health risk assessment based on Monte Carlo simulation for pesticide residues in date fruits of Iran. Environmental Science and Pollution Research, 28(31), pp. 42037-42050. https://doi.org/10.1007/s11356-021-13542-0.
Jallow, M.F.A., Awadh, D.G., Albaho, M.S., Devi, V.Y., and Thomas, B.M. 2017b. Pesticide knowledge and safety practices among farm workers in Kuwait: results of a survey. International Journal of Environmental Research and Public Health, 14(4): 340. https://doi.org/10.3390/ijerph14040340.
Lozowicka, B., Abzeitova, E., Sagitov, A., Kaczynski, P., Toleubayev, K., and Li, A. 2015. Studies of pesticide residues in tomatoes and cucumbers from Kazakhstan and the associated health risks. Environment Monitoring Assessment, 187(10):609. https://doi.org/10.1007/s10661-015-4818-6.
Mahdavi, V., Eslami, Z., Gordan, H., Ramezani, S., Peivasteh-roudsari, L., Maˈmani, L., and Mousavi Khaneghah, A. 2022. Pesticide residues in green-house cucumber, cantaloupe, and melon samples from Iran: A risk assessment by Monte Carlo Simulation. Environmental Research,15:206:112563. https://doi.org/10.1016/j.envres.2021.112563 .
Mahdavi, V., Heris, M.E.S., Dastranj, M., Eslami, Z., and Aboul-Enein, H.Y. 2021. Assessment of Pesticide Residues in Soils Using a QuEChERS Extraction Procedure and LC-MS/MS. Water, Air, and Soil Pollution, 232(4),159. https://doi.org/10.1007/s11270-021-05104-4.
Melo, A., Cunha, S.C., Mansilha, C., Aguiar, A., Pinho, O., and Ferreira, I. 2012. Monitoring pesticide residues in greenhouse tomato by combining acetonitrile-based extraction with dispersive liquid–liquid micro extraction followed by gas chromatography-mass spectrometry. Food Chemistry, 135(3):1071–1077. https://doi.org/10.1016/j.foodchem.2012.05.112.
Ripley, B.D., Lissemore, L.L., Leishman, P.D., Denomme M.A., and Ritter L. 1995. Pesticide residue in fruits and vegetables from Ontario, Canada. Journal of AOAC International, AOAC International publication. 83(1):196-2013. https://doi.org/10.1093/jaoac/83.1.196.
Schusterova, D.; Hajslova, J.; Kocourek, V.; and Pulkrabova, J. 2021. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods, 10(2), 307. https://doi.org/10.3390/foods10020307.
Viana, E., Malto, J.C., and Font, G. 1996. Optimization of a Matrix Solid-Phase Dispersion Method for the Analysis of Pesticide residues in Vegetables. Journal of Chromatography,754(1-2),437-444. https://doi.org/10.1016/S0021-9673(96)00538-9.