Higher order conservation laws of the Caudery-Dodd-Gibbon-Sawada-Kotera equation by scaling method
Subject Areas : Differential geometry
1 -
Keywords: Caudery-Dodd-Gibbon-Sawada-Kotera, scaling symmetry, conservation law,
Abstract :
In this paper, a novel conservation law for the Caudrey-Dodd-Gibon-Sawada-Kotera equation utilizing scaling method is derived. This approach is systematic and relies on variational calculus and linear algebra. Also, the conservation law's density is developed by examining the scaling symmetry of the equation, while the corresponding flux is determined through the homotopy operator. This density-flux combination yields a conservation law for the equation. In particular, we establish a conservation law of rank $8$ for the Caudrey-Dodd-Gibon-Sawada-Kotera equation.
[1] S. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: general treatment, Euro. J. Appl. Math. 13 (5) (2002), 568-585.
[2] R. N. Aiyer, B. Fuchssteiner, W. Oevel, Solitons and discrete eigenfunctions of the recursion operator of nonlinear evolution equations. I. The Caudrey-Dodd-Gibbon-Sawada-Kotera equation, J. Phys.. A. 19 (18) (1986), 3755-3770.
[3] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Appl. Math. Sciences, Vol. 168, Springer Verlag, New York, 2010.
[4] P. J. Caudrey, R. K. Dodd, J. D. Gibbon, A new hierarchy of Kortewegde Vries equations, Proc. Royal. Soc. London. A. Math. Phys. Sci. 351 (1997), 407-422.
[5] A. F. Cheviakov, Computation of fluxes of conservation laws, J. Eng. Math. 66 (2010), 153-173.
[6] A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comp. Phys. Comm. 176 (1) (2007), 18-61.
[7] V. Z. Enolski, Y. N. Fedorov, A. N. W. Hone, Generic hyperelliptic prym varieties in a generalized Henon-Heiles system, J. Geom. Phys. 87 (2014), 106-114.
[8] W. Herman, Symbolic computation of conservation laws of nonlinear partial differential equations in multidimensions, Int. J. Quant. Chem. 106 (2006), 278-299.
[9] E. Noether, Invariante variations probleme, Transp. Theory Stat. Phys. 1 (3) (1971) 186-207.
[10] P. J. Olver, Application of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993.
[11] A. Parker, A reformulation of the dressing method for the Sawada-Kotera equation, Inverse Prob. 17 (4) (2001), 885-895.
[12] D. Poole, Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Using Homotopy Operators, Ph.D. Dissertation, Colorado School of Mines, Golden, Colorado, 2009.
[13] D. Poole, W. Herman, Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions, J. Symb. Comput. 46 (2011), 1355-1377.
[14] J. Satsuma, D. J. Kaup, A Bäcklund transformation for a higher order Korteweg-de Vries equation, J. Phys. Soc. Japan. 43 (2) (1977), 692-697.
[15] K. Sawada, T. Kotera, A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equation, Prog. Theor. Phys. 51 (5) (1974), 1355-1367.