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Abstract. In this paper, a novel conservation law for the Caudrey-Dodd-Gibon-Sawada-
Kotera equation utilizing scaling method is derived. This approach is systematic and relies
on variational calculus and linear algebra. Also, the conservation law’s density is developed by
examining the scaling symmetry of the equation, while the corresponding flux is determined
through the homotopy operator. This density-flux combination yields a conservation law for
the equation. In particular, we establish a conservation law of rank 8 for the Caudrey-Dodd-
Gibon-Sawada-Kotera equation.
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1. Introduction

Conservation laws are represented as divergence expressions that equal zero when ap-
plied to the solutions of partial differential equations (in short, PDEs). These laws are
essential in physics and assert that certain quantities within a system remain constant
over time. Note that various methods exist for deriving the conservation laws applicable
to a given system [1, 3, 5, 6]. Noether’s theorem, connecting variational symmetry with
conservation laws in partial differential equations (PDEs), has been employed in various
established methods [9, 10]. Moreover, there exists an alternative approach that utilizes
calculus of variations and linear algebra. This approach, known as the scaling method,
operates in the following manner [12]. First, a primitive density characterized by arbi-
trary coefficients, which remains invariant under the scaling symmetry of the PDE, is
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considered. Then the time derivative of this primitive density is computed and integrated
with the PDE. By applying the Euler operator, a linear system is derived which solving
this system allows for the construction of the actual density. Finally, the corresponding
flux is determined through the application of the inverse divergence operator, also re-
ferred to as the homotopy operator. Sawada and Kotera [15] proposed one of models in
soliton theory as follows:

ut + u5x + 30uu3x + 30uxu2x + 180u2ux = 0, (1)

which is also introduced by Caudrey et al. [4]. Hence, (1) is called the Caudrey-Dodd-
Gibbon-Sawada-Kotera (in short, CDGSK) equation. The CDGSK equation has been
developed by many researchers. In relation to this equation, the finite dimensional re-
duction was investigated by Enolski et al. [7] and N-soliton solutions were discovered by
Parker [11] via the dressing method. Darboux transformation [2] and Bäcklund transfor-
mation in bilinear forms [14] were also applied to study the CDGSK equation.

This research is structured in the following manner. Section 2 presents various def-
initions and prior findings that will be referenced in the sequel. In Section 3, we will
demonstrate that the CDGSK equation maintains uniformity in rank and possesses a
scaling symmetry. Section 4 focuses on the construction of the primitive density for rank
8, which the actual density is derived by eliminating divergence and divergence-equivalent
terms. Finally, we compute the relevant fluxes utilizing the homotopy operator.

2. preliminaries

Consider a system of equations P (x, u(n)) = 0, where x = (x1, . . . , xp) and u =
(u1, . . . , uq) are independent space variables and dependent variables and u(n) is all
derivatives of u up to the n-th order. A conservation law can be expressed as follows:

DivQ = 0 on P = 0. (2)

The definition is deduced from Olver [6, 1993] and Bluman et al. [8, 2010], and is generally
employed in the literature of symmetries of PDEs. In dynamical problems, the time
variable t and the spatial variables x = (x1, . . . , xp) are determined separately. Thus,
one can use another definition for the conservation law by Dtρ + DivJ = 0 on P = 0,
where ρ is the conserved density and J is the corresponding flux. In the following, total
time derivative operator and total divergence with respect to the space variables are
explained. Total derivative operator Dt applied to function f(x, t, u(n)) is defined as

Dtf =
∂f

∂t
+

q∑
α

∑
J

uαJ,t
∂f

∂uαJ
,

where J = (j1, . . . , jk) is a multi-index with 0 ⩽ k ⩽ n

Definition 2.1 [13] The one dimensional Euler operator for dependent variable uj(x)
is expressed as follows:

Luj(x)f =

Mj
1∑

k=0

(−Dx)
k ∂f

∂ujkx
, j = 1, · · · , q. (3)
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This operator plays an important role in determining the accuracy of differential func-
tions, which is a critical aspect in the calculation of conservation laws.

Definition 2.2 [13] Let f be a differential function of order n. In one dimension, f
is termed exact if it is a total derivative, that is, there exists a differentiable function
F (x, u(n−1)(x)) such that f = DxF .

Theorem 2.3 [13]A function f is considered exact if and only if Lu(x)f equals 0, 0
represents vector (0, . . . , 0), which consists of q components corresponding to the number
of components in u.

Definition 2.4 [12] Let f be an exact 1 D differential function. The homotopy operator
in one dimensional is expressed as

Hu(x)f =

∫ 1

0

 n∑
j=1

Iuj(x)f

 [λu]
dλ

λ
,where u = (u1, · · · , uq).

Iuj(x)f is defined by

Iuj(x)f =

nj
1∑

k=1

(
k−1∑
i=0

ujix(−Dx)
k−(i+1)

)
∂f

∂ujkx
, (4)

where nj
1 represents the order of f in relation to the dependent variable uj regarding x.

Theorem 2.5 [12] Let f be an exact differential function, that is, DxF = f for some
differential function F (x, u(n−1)(x)). Then F = D−1

x f = Hu(x)f .

3. Scaling symmetry of the CDGSK equation

The CDGSK equation admits the scaling symmetry (x, t, u) → (λ−1x, λ−5t, λ2u),
where λ is an arbitrarily constant. Several algorithmic approaches exist for identifying
scaling symmetries [3, 5, 10]. Here, we apply the idea of variable weights to determine it
[8].

Definition 3.1 Let x → λpx be the scaling symmetry. The weight of the variable x,
denoted by W (x), is equal to −p. If W (x) is equal to −p, then the weight of Dx is
characterized as p. In this manner, one can take the rank of a monomial which is the
sum of the weights of its variables. The monomials within a differential function share
the same rank referred to as being uniform in rank.

An equation that exhibits scaling symmetry is consistent in rank, which allows us
to derive the scaling symmetry of the CDGSK equation by considering (1) maintains
uniformity in rank. Under this assumption, we can formulate a system of weight-balance
equations. We can identify the scaling symmetry by solving this system. For (1), the
corresponding weight-balance equation is

W (u) +W (Dt) = W (u) + 5W (Dx) = 2W (u) + 3W (Dx) = 3W (u) +W (Dx), (5)

which results in W (u) = 2,W (Dx) = 1, and W (Dt) = 5. Given that (2) must be zero
for all solutions of the PDE, the density and flux of the conservation law must adhere
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to its scaling symmetries. Hence, it is clear that the conservation law must also main-
tain uniformity in rank. Furthermore, based on the symmetry inherent in the CDGSK
equation, we can formulate the initial density as a linear combination of monomials of
the specified rank. To see details, we refer to [2].

4. Computing conservation laws of the CDGSK equation

In this section, we derive the conservation laws associated with the CDGSK equation
through the scaling method. The process starts with the construction of the density,
followed by the determination of the corresponding flux J . To establish the density, we
start with an initial density represented as a linear combination of differential terms, each
with arbitrary coefficients. It is essential that this combination is selected from a prede-
termined rank and it remains invariant under the scaling symmetry. Next step involves
calculating the total time derivative of the initial density, where all time derivatives in
the expressions are substituted with their corresponding equivalents as defined in (1). By
(2), the resulting expression is required to be precise. Finally, the arbitrary coefficients
are determined by solving the linear system, which is established through the application
of Theorem 2.3 regarding exactness. Replacing the coefficients derived from the afore-
mentioned system with the initial density, the actual density can be determined. Then
the relevant flux is calculated using this formula.

J = −Div−1(Dtρ). (6)

Candidate density as previously stated, the initial step in identifying conservation laws
involves determining the density. We begin by selecting an arbitrary rank for the initial
density. Next, we formulate the terms of the density by combining monomials of a des-
ignated rank that incorporate dependent variables and their partial derivatives. Then
we derive the initial density of rank 8 for the CDGSK equation (1). Consider the set
P including dependent variables up to rank 8. Using (5), we have P = u4, u3, u2, u. We
then apply the total derivative operator concerning the spatial variables to P, thereby
elevating the rank of the terms in the list to 8. This generated list is referred to as the
updated list.

Q = {u4, u2u2x, u2x2, ux2u, u3xux, u4xu, u6x}. (7)

To ensure that the density is nontrivial, it is necessary to eliminate the divergence terms
while retaining one of the divergence-equivalent terms from the list and discarding the
others. By applying (3) to (7), we obtain the following result:

Lu(x)Q = {4u3, 4uu2x + 2ux
2,−2uxu2x − ux

2, 2u4x,−2u4x, 2u4x, 0}. (8)

Theorem 2.3 indicates that the term u6x is divergence and should consequently be ex-
cluded from Q. The second and third entries in list (8) are multiples of one another,
which implies that the corresponding terms in (7) are divergence-equivalent, and one
of them must omit from Q. Among the equivalent terms, the one with the lowest rank
should be retained while the others are discarded. As a result, u2u2x will be eliminated
from the list. Similarly, the fourth, fifth and sixth terms will follow this process. There-
fore, QQ = {u4, uux2, u2x2}. Next, let us check a linear combination of the elements from
the aforementioned list, utilizing arbitrary coefficients to establish the initial density of
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rank 8 for the CDGSK equation. Consider a linear combination of the elements from the
aforementioned list, utilizing arbitrary coefficients to establish the initial density of rank
8 for the CDGSK equation.

ρ = c1u
4 + c2uux

2 + c3u2x
2. (9)

5. Calculating the actual density

To identify the unknown coefficients in equation (9), we compute Dt of (9). Thus,

Dtρ = (4C1u
3 + C2ux

2)ut + 2C2uuxuxt + 2C3u2xu2xt.

We proceed by substituting ut and its derivatives with their corresponding values as
indicated in (1). Let E be defined as Dt. Then E must be precise as stated in (2).
Hence, applying Theorem 2.3, we obtain Lu(x)E = 0. This establishes a system of linear
equations, and by solving this system, the unknown coefficients can be identified as
follows:

c1 = 12c3, c2 = −18c3, c3 = c3. (10)

c3 is considered arbitrary. If we set c3 = 1, it follows that c1 = 12 and c2 = −18.
Substituting (10) into (9), we can derive the actual density by ρ = 12u4−18uux

2+uxx
2.

6. Determining the flux

Once the density is established, the associated flux can be computed by utilizing the
relationship J = Div−1(E). We apply Theorem 2.5 along with the homotopy operator
to derive the flux. Substituting (10) into E, we obtain

E = −3240c1u
2uxu2x − 2160c1uux

3 − 2160c2u
2uxu2x − 1440c2uux

3

− 120c1uuxu4x − 240c1uu2xu3x − 240c1ux
2u3x − 360c1uxu2x

2

+ 120c2uuxu4x + 240c2uu2xu3x + 240c2ux
2u3x + 360c2uxu2x

2

+ 3600c3uuxu4x + 7200c3uu2xu3x + 7200c3ux
2u3x + 10800c3uxu2x

2

+ 10c2uxu6x + 30c2u2xu5x + 50c2u3xu4x + 180c3uxu6x

+ 540c3u2xu5x + 900c3u3xu4x

Using relation (4), Iu(x)E is determined as follows:

Iu(x)E = 8640u6 + 7200u4u2x − 27000u3ux
2 + 192u3u4x

− 4896u2uxu3x + 3168u2u2x
2 − 1008uux

2u2x + 432ux
4

− 108uuxu5x + 288uu2xu4x − 144uu3x
2 + 54ux

2u4x

+ 144uxu2xu3x + 192u2x
3 + 4u2xu6x − 4u3xu5x + 2u4x

2
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Now, the flux is derived as follows:

J = Hu(x)E

=

∫ 1

0
Iu(x)E[λu]

dλ

λ

= 1440u6 + 1440u4u2x − 5400u3ux
2 + 48u3u4x

− 1224u2uxu3x + 792u2u2x
2 − 252uux

2u2x + 108ux
4

− 36uuxu5x + 96uu2xu4x − 48uu3x
2 + 18ux

2u4x

+ 48uxu2xu3x + 64u2x
3 + 2u2xu6x − 2u3xu5x + u4x

2

7. Conclusion

In this article, we considered the fifth-order evolutionary integrable Caudery-Dodd-
Gibbon-Sawada-Kotera equation that admits scaling symmetry and is uniform in rank.
Applying the scaling method, the density of the conservation law was constructed and
associated flux was computed by the homotopy operator. In fact, the conservation law
of rank eight was constructed for the Caudery-Dodd-Gibbon-Sawada-Kotera equation.
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