Modeling the relationship between building density, green spaces, and thermal comfort in dense urban areas of Tehran
Subject Areas :
pedram alibeiki
1
,
شادی عزیزی
2
,
Hamid Reza Mousavi
3
1 -
2 - گروه معماری، دانشکده معماری و شهرسازی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.
3 - عضو هیأت علمی دانشکده هنر ، گروه هنر، دانشکده هنر، دانشگاه آزاد اسلامی واحد تهران مرکزی، شهر تهران، کشور ایران
Keywords: Urban Heat Island, Urban density, Green Space, Thermal Comfort.,
Abstract :
Urbanization and industrialization have led to increased urban density and adverse environmental effects such as the urban heat island phenomenon in megacities like Tehran. This study investigates the relationship between building density, green spaces, and thermal comfort in District 10 of Tehran, a high-density urban area, through parametric modeling. By calculating the urban density index and conducting a two-week field survey, as well as defining scenarios of reduced density and increased green spaces using ENVI-met simulations, this study examines the impacts of these factors. Results indicate that altering urban development patterns, reducing longitudinal density in combination with green spaces and park development, can improve microclimatic conditions, reduce energy consumption, and lower air temperatures by 3-4 degrees Celsius through increased shading, plant evapotranspiration, and ventilation via connective spaces. Findings of this study highlight the importance of appropriate urban geometry, consideration of density, and increased green spaces as key factors in enhancing thermal comfort for residents in high-density areas with hot and dry climates.
Aflaki, A., Mirnezhad, M., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Omrany, H., Wang, Z.-H., & Akbari, H. (2017). Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62, 131-145. doi:https://doi.org/10.1016/j.cities.2016.09.003
Akbari, H. (2009). Cooling our communities. A guidebook on tree planting and light-colored surfacing. doi:10.2172/5032229.
Amani-Beni, M., Zhang, B., & Xu, J. (2018). Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. urban forestry & urban greening, 32, 1-6. doi:https://doi.org/10.1016/j.ufug.2018.03.016
Begum, M. S., Bala, S. K., Islam, A., & Roy, D. (2021). Environmental and Social Dynamics of Urban Rooftop Agriculture (URTA) and Their Impacts on Microclimate Change. Sustainability, 13(16), 9053. doi:https://doi.org/10.3390/su13169053
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. doi:https://doi.org/10.1016/j.landurbplan.2010.05.006
Brown, R., & Gillespie, T. (1986). Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. International Journal of Biometeorology, 30, 43-52. doi:https://doi.org/10.1007/BF02192058
Chan, S. Y., & Chau, C. K. (2021). On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable Cities and Society, 64, 102512. doi:https://doi.org/10.1016/j.scs.2020.102512
Chang, C.-R., & Li, M.-H. (2014). Effects of urban parks on the local urban thermal environment. urban forestry & urban greening, 13(4), 672-681. doi:https://doi.org/10.1016/j.ufug.2014.08.001
Chapman, S., Watson, J. E., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32, 1921-1935. doi:https://doi.org/10.1007/s10980-017-0561-4
De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549-561. doi:https://doi.org/10.1016/S0378-7788(02)00005-1
Golasi, I., Salata, F., de Lieto Vollaro, E., Coppi, M., & de Lieto Vollaro, A. (2016). Thermal perception in the mediterranean area: Comparing the mediterranean outdoor comfort index (moci) to other outdoor thermal comfort indices. Energies, 9(7), 550. doi:https://doi.org/10.3390/en9070550
Höppe, P. (1999a). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71-75. doi:https://doi.org/10.1007/s004840050118
Höppe, P. (1999b). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71-75. doi:https://doi.org/10.1007/s004840050118
Hunt, A., & Watkiss, P. (2011). Climate change impacts and adaptation in cities: a review of the literature. Climatic change, 104(1), 13-49. doi:https://doi.org/10.1007/s10584-010-9975-6
ISO. (2005). Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. In: ISO. Jacobs, S. J., Pezza, A. B., Barras, V., & Bye, J. (2014). A new ‘bio-comfort’perspective for Melbourne based on heat stress, air pollution and pollen. International Journal of Biometeorology, 58, 263-275. doi:https://doi.org/10.1007/s00484-013-0636-0
Jendritzky, G., & Nübler, W. (1981). Model analysing the urban thermal environment in physiologically significant terms. Arch. Meteorol., Geophys. Bioklimatol., Ser. B;(Austria), 29(4). doi:https://doi.org/10.1007/BF02263308
Khare, V. R., Vajpai, A., & Gupta, D. (2021). A big picture of urban heat island mitigation strategies and recommendation for India. Urban Climate, 37, 100845. doi:https://doi.org/10.1016/j.uclim.2021.100845 Kotharkar, R., Ramesh, A., & Bagade, A. (2018). Urban heat island studies in South Asia: A critical review. Urban Climate, 24, 1011-1026. doi:https://doi.org/10.1016/j.uclim.2017.12.006
Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 661, 337-353. doi:https://doi.org/10.1016/j.scitotenv.2019.01.062
Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020). On the influence of density and morphology on the Urban Heat Island intensity. Nature communications, 11(1), 2647. doi:https://doi.org/10.1038/s41467-020-16461-9
Libanda, E., Nkolola, N. B., & Chilekana, N. (2020). Human thermal comfort and urban climate of Zambia’s economic and political hub: a RayMan model study. Modeling Earth Systems and Environment, 6, 1671-1682. doi:https://doi.org/10.1007/s40808-020-00782-1
Liu, Z., Cheng, W., Jim, C. Y., Morakinyo, T. E., Shi, Y., & Ng, E. (2021). Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Building and Environment, 200, 107939. doi:https://doi.org/10.1016/j.buildenv.2021.107939
Manso, M., Teotónio, I., Silva, C. M., & Cruz, C. O. (2021). Green roof and green wall benefits and costs: A review of the quantitative evidence. Renewable and sustainable energy reviews, 135, 110111. doi:https://doi.org/10.1016/j.rser.2020.110111
Miguel, M., Hien, W. N., Marcel, I., Chung, H. D. J., Yueer, H., Zhonqi, Y., . . . Son, N. N. (2021). A physically-based model of interactions between a building and its outdoor conditions at the urban microscale. Energy and Buildings, 237, 110788. doi:https://doi.org/10.1016/j.enbuild.2021.110788
Nadizadeh Shorabeh, S., Hamzeh, S., Zanganeh Shahraki, S., Firozjaei, M. K., & Jokar Arsanjani, J. (2020). Modelling the intensity of surface urban heat island and predicting the emerging patterns: Landsat multi-temporal images and Tehran as case study. International Journal of Remote Sensing, 41(19), 7400-7426. doi:https://doi.org/10.1080/01431161.2020.1759841
Owusu, V., Bakang, J.-E. A., Abaidoo, R. C., & Kinane, M. L. (2012). Perception on untreated wastewater irrigation for vegetable production in Ghana. Environment, development and sustainability, 14(1), 135-150. doi:https://doi.org/10.1007/s10668-011-9312-x
Pearlmutter, D., Jiao, D., & Garb, Y. (2014). The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. International Journal of Biometeorology, 58, 2111-2127. doi:https://doi.org/10.1007/s00484-014-0812-x
Pei, X., Wu, J., Xue, J., Zhao, J., Liu, C., & Tian, Y. (2022). Assessment of cities’ adaptation to climate change and its relationship with urbanization in China. Sustainability, 14(4), 2184. doi:https://doi.org/10.3390/su14042184
Pickup, J., & de Dear, R. (2000). An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. Paper presented at the Biometeorology and urban climatology at the turn of the millenium. Selected papers from the Conference ICB-ICUC.
Pigliautile, I., Chàfer, M., Pisello, A. L., Pérez, G., & Cabeza, L. F. (2020). Inter-building assessment of urban heat island mitigation strategies: Field tests and numerical modelling in a simplified-geometry experimental set-up. Renewable Energy, 147, 1663-1675. doi:https://doi.org/10.1016/j.renene.2019.09.082 Rosso, F., Pisello, A. L., Cotana, F., & Ferrero, M. (2016). On the thermal and visual pedestrians' perception about cool natural stones for urban paving: A field survey in summer conditions. Building and Environment, 107, 198-214. doi:https://doi.org/10.1016/j.buildenv.2016.07.028
Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar energy, 103, 682-703. doi:https://doi.org/10.1016/j.solener.2012.07.003
Shahmohamadi, P., Che-Ani, A., Abdullah, N., Tahir, M., Maulud, K., & Mohd-Nor, M. (2010). The link between urbanization and climatic factors: A concept on formation of urban heat island. WSEAS Transactions on Environment and Development, 6(11), 754-768. Retrieved from https://www.researchgate.net/publication/266470018_The_Link_between_Urbanization_and_Climatic_Factors_A_Concept_on_Formation_of_Urban_Heat_Island
Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Climate, 35, 100751. doi:https://doi.org/10.1016/j.uclim.2020.100751
Sharmin, T., Steemers, K., & Matzarakis, A. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 34, 293-308. doi:https://doi.org/10.1016/j.scs.2017.07.006
Standard, A. (1992). Thermal environmental conditions for human occupancy. In ANSI/ASHRAE, 55 (Vol. 5). Tan, Z., Lau, K. K.-L., & Ng, E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265-274. doi:https://doi.org/10.1016/j.enbuild.2015.06.031
Tian, L., Li, Y., Lu, J., & Wang, J. (2021). Review on urban heat island in China: Methods, its impact on buildings energy demand and mitigation strategies. Sustainability, 13(2), 762. doi:https://doi.org/10.3390/su13020762
Tong, S., Wong, N. H., Tan, C. L., Jusuf, S. K., Ignatius, M., & Tan, E. (2017). Impact of urban morphology on microclimate and thermal comfort in northern China. Solar energy, 155, 212-223. doi:https://doi.org/10.1016/j.solener.2017.06.027
Torbatian, S., Hoshyaripour, A., Shahbazi, H., & Hosseini, V. (2020). Air pollution trends in Tehran and their anthropogenic drivers. Atmospheric Pollution Research, 11(3), 429-442. doi:https://doi.org/10.1016/j.apr.2019.11.015
Trussell, B. (2010). The Bid Rent Gradient Theory ln Eugene, Oregon.
Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55-76. doi:https://doi.org/10.1016/j.scs.2018.08.009
Umemura, S., & Horikoshi, T. (1991). Effect of thermal condition upon the human body in urban cavity spaces. Paper presented at the Technical Papers of Annual Meeting the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan. Xiao, X. D., Dong, L., Yan, H., Yang, N., & Xiong, Y. (2018). The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society, 40, 428-439. doi:https://doi.org/10.1016/j.scs.2018.04.002
Xu, X., Sun, S., Liu, W., García, E. H., He, L., Cai, Q., . . . Zhu, J. (2017). The cooling and energy saving effect of landscape design parameters of urban park in summer: A case of Beijing, China. Energy and Buildings, 149, 91-100. doi:https://doi.org/10.1016/j.enbuild.2017.05.052
Yan, H., Wu, F., & Dong, L. (2018). Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 622, 882-891. doi:https://doi.org/10.1016/j.scitotenv.2017.11.327
Zhao, Q., Lian, Z., & Lai, D. (2021). Thermal comfort models and their developments: A review. Energy and Built Environment, 2(1), 21-33. doi:https://doi.org/10.1016/j.enbenv.2020.05.007