مدلسازی رابطه بین تراکم ساختمانی، فضاهای سبز و آسایش حرارتی در مناطق متراکم شهر تهران
الموضوعات :
پدرام علی بیکی
1
,
شادی عزیزی
2
,
حمیدرضا موسوی
3
1 - عضو گروه معماری و شهرسازی دانشگاه آزاد اسلامی واحد تهران مرکزی
2 - گروه معماری، دانشکده معماری و شهرسازی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.
3 - عضو هیأت علمی دانشکده هنر ، گروه هنر، دانشکده هنر، دانشگاه آزاد اسلامی واحد تهران مرکزی، شهر تهران، کشور ایران
الکلمات المفتاحية: جزیره حرارتی, تراکم شهری, فضای سبز, آسایش حرارتی,
ملخص المقالة :
رشد شهرنشینی و صنعتی شدن در سال های اخیر موجب افزایش تراکم شهری و نیز پدید آمدن اثرات نامطلوب محیطی تحت تاثیر جزایر حرارتی در شهرهایی همچون کلانشهر تهران گردیده است. پژوهش حاضر بدنبال رابطه بین تراکم ساختمانی، فضای سبز و آسایش حرارتی در منطقه ده شهرداری تهران به عنوان یکی از مناطق پرتراکم شهری از طریق مدلسازی پارامترهای مورد نظر است. در این پژوهش، با محاسبه شاخص تراکم شهری و نیز برداشت میدانی به مدت دو هفته همچنین تعریف سناریو کاهش تراکم و افزایش سبزینگی از طریق شبیه سازی نرم افزار انویمت به بررسی تاثیرات موضوع پرداخته شده است. نتایج نشان میدهد که با تغییر الگوی توسعه شهری و کاهش تراکم در راستای طولی در ترکیب با فضای سبز و احداث پارک میتوان به بهبود شرایط خرده اقلیمی، کاهش مصرف انرژی و دمای هوا به میزان 4-3 درجه سانتی گراد از طریق افزایش سایه اندازی، تبخیر و تعرق گیاهان و تهویه مناسب بوسیله فضاهای ارتباطی بهبود بخشید. یافتههای این پژوهش تأکید میکند که هندسه مناسب شهری و توجه به مساله تراکم در کنار افزایش فضای سبز، از عوامل کلیدی در بهبود آسایش حرارتی شهروندان در مناطق پرتراکم با اقلیم گرم و خشک هستند.
Aflaki, A., Mirnezhad, M., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Omrany, H., Wang, Z.-H., & Akbari, H. (2017). Urban heat island mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62, 131-145. doi:https://doi.org/10.1016/j.cities.2016.09.003
Akbari, H. (2009). Cooling our communities. A guidebook on tree planting and light-colored surfacing. doi:10.2172/5032229.
Amani-Beni, M., Zhang, B., & Xu, J. (2018). Impact of urban park’s tree, grass and waterbody on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. urban forestry & urban greening, 32, 1-6. doi:https://doi.org/10.1016/j.ufug.2018.03.016
Begum, M. S., Bala, S. K., Islam, A., & Roy, D. (2021). Environmental and Social Dynamics of Urban Rooftop Agriculture (URTA) and Their Impacts on Microclimate Change. Sustainability, 13(16), 9053. doi:https://doi.org/10.3390/su13169053
Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. doi:https://doi.org/10.1016/j.landurbplan.2010.05.006
Brown, R., & Gillespie, T. (1986). Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. International Journal of Biometeorology, 30, 43-52. doi:https://doi.org/10.1007/BF02192058
Chan, S. Y., & Chau, C. K. (2021). On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable Cities and Society, 64, 102512. doi:https://doi.org/10.1016/j.scs.2020.102512
Chang, C.-R., & Li, M.-H. (2014). Effects of urban parks on the local urban thermal environment. urban forestry & urban greening, 13(4), 672-681. doi:https://doi.org/10.1016/j.ufug.2014.08.001
Chapman, S., Watson, J. E., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecology, 32, 1921-1935. doi:https://doi.org/10.1007/s10980-017-0561-4
De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy and Buildings, 34(6), 549-561. doi:https://doi.org/10.1016/S0378-7788(02)00005-1
Golasi, I., Salata, F., de Lieto Vollaro, E., Coppi, M., & de Lieto Vollaro, A. (2016). Thermal perception in the mediterranean area: Comparing the mediterranean outdoor comfort index (moci) to other outdoor thermal comfort indices. Energies, 9(7), 550. doi:https://doi.org/10.3390/en9070550
Höppe, P. (1999a). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71-75. doi:https://doi.org/10.1007/s004840050118
Höppe, P. (1999b). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71-75. doi:https://doi.org/10.1007/s004840050118
Hunt, A., & Watkiss, P. (2011). Climate change impacts and adaptation in cities: a review of the literature. Climatic change, 104(1), 13-49. doi:https://doi.org/10.1007/s10584-010-9975-6
ISO. (2005). Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. In: ISO. Jacobs, S. J., Pezza, A. B., Barras, V., & Bye, J. (2014). A new ‘bio-comfort’perspective for Melbourne based on heat stress, air pollution and pollen. International Journal of Biometeorology, 58, 263-275. doi:https://doi.org/10.1007/s00484-013-0636-0
Jendritzky, G., & Nübler, W. (1981). Model analysing the urban thermal environment in physiologically significant terms. Arch. Meteorol., Geophys. Bioklimatol., Ser. B;(Austria), 29(4). doi:https://doi.org/10.1007/BF02263308
Khare, V. R., Vajpai, A., & Gupta, D. (2021). A big picture of urban heat island mitigation strategies and recommendation for India. Urban Climate, 37, 100845. doi:https://doi.org/10.1016/j.uclim.2021.100845 Kotharkar, R., Ramesh, A., & Bagade, A. (2018). Urban heat island studies in South Asia: A critical review. Urban Climate, 24, 1011-1026. doi:https://doi.org/10.1016/j.uclim.2017.12.006
Lai, D., Liu, W., Gan, T., Liu, K., & Chen, Q. (2019). A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, 661, 337-353. doi:https://doi.org/10.1016/j.scitotenv.2019.01.062
Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020). On the influence of density and morphology on the Urban Heat Island intensity. Nature communications, 11(1), 2647. doi:https://doi.org/10.1038/s41467-020-16461-9
Libanda, E., Nkolola, N. B., & Chilekana, N. (2020). Human thermal comfort and urban climate of Zambia’s economic and political hub: a RayMan model study. Modeling Earth Systems and Environment, 6, 1671-1682. doi:https://doi.org/10.1007/s40808-020-00782-1
Liu, Z., Cheng, W., Jim, C. Y., Morakinyo, T. E., Shi, Y., & Ng, E. (2021). Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Building and Environment, 200, 107939. doi:https://doi.org/10.1016/j.buildenv.2021.107939
Manso, M., Teotónio, I., Silva, C. M., & Cruz, C. O. (2021). Green roof and green wall benefits and costs: A review of the quantitative evidence. Renewable and sustainable energy reviews, 135, 110111. doi:https://doi.org/10.1016/j.rser.2020.110111
Miguel, M., Hien, W. N., Marcel, I., Chung, H. D. J., Yueer, H., Zhonqi, Y., . . . Son, N. N. (2021). A physically-based model of interactions between a building and its outdoor conditions at the urban microscale. Energy and Buildings, 237, 110788. doi:https://doi.org/10.1016/j.enbuild.2021.110788
Nadizadeh Shorabeh, S., Hamzeh, S., Zanganeh Shahraki, S., Firozjaei, M. K., & Jokar Arsanjani, J. (2020). Modelling the intensity of surface urban heat island and predicting the emerging patterns: Landsat multi-temporal images and Tehran as case study. International Journal of Remote Sensing, 41(19), 7400-7426. doi:https://doi.org/10.1080/01431161.2020.1759841
Owusu, V., Bakang, J.-E. A., Abaidoo, R. C., & Kinane, M. L. (2012). Perception on untreated wastewater irrigation for vegetable production in Ghana. Environment, development and sustainability, 14(1), 135-150. doi:https://doi.org/10.1007/s10668-011-9312-x
Pearlmutter, D., Jiao, D., & Garb, Y. (2014). The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. International Journal of Biometeorology, 58, 2111-2127. doi:https://doi.org/10.1007/s00484-014-0812-x
Pei, X., Wu, J., Xue, J., Zhao, J., Liu, C., & Tian, Y. (2022). Assessment of cities’ adaptation to climate change and its relationship with urbanization in China. Sustainability, 14(4), 2184. doi:https://doi.org/10.3390/su14042184
Pickup, J., & de Dear, R. (2000). An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. Paper presented at the Biometeorology and urban climatology at the turn of the millenium. Selected papers from the Conference ICB-ICUC.
Pigliautile, I., Chàfer, M., Pisello, A. L., Pérez, G., & Cabeza, L. F. (2020). Inter-building assessment of urban heat island mitigation strategies: Field tests and numerical modelling in a simplified-geometry experimental set-up. Renewable Energy, 147, 1663-1675. doi:https://doi.org/10.1016/j.renene.2019.09.082 Rosso, F., Pisello, A. L., Cotana, F., & Ferrero, M. (2016). On the thermal and visual pedestrians' perception about cool natural stones for urban paving: A field survey in summer conditions. Building and Environment, 107, 198-214. doi:https://doi.org/10.1016/j.buildenv.2016.07.028
Santamouris, M. (2014). Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar energy, 103, 682-703. doi:https://doi.org/10.1016/j.solener.2012.07.003
Shahmohamadi, P., Che-Ani, A., Abdullah, N., Tahir, M., Maulud, K., & Mohd-Nor, M. (2010). The link between urbanization and climatic factors: A concept on formation of urban heat island. WSEAS Transactions on Environment and Development, 6(11), 754-768. Retrieved from https://www.researchgate.net/publication/266470018_The_Link_between_Urbanization_and_Climatic_Factors_A_Concept_on_Formation_of_Urban_Heat_Island
Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Climate, 35, 100751. doi:https://doi.org/10.1016/j.uclim.2020.100751
Sharmin, T., Steemers, K., & Matzarakis, A. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 34, 293-308. doi:https://doi.org/10.1016/j.scs.2017.07.006
Standard, A. (1992). Thermal environmental conditions for human occupancy. In ANSI/ASHRAE, 55 (Vol. 5). Tan, Z., Lau, K. K.-L., & Ng, E. (2016). Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy and Buildings, 114, 265-274. doi:https://doi.org/10.1016/j.enbuild.2015.06.031
Tian, L., Li, Y., Lu, J., & Wang, J. (2021). Review on urban heat island in China: Methods, its impact on buildings energy demand and mitigation strategies. Sustainability, 13(2), 762. doi:https://doi.org/10.3390/su13020762
Tong, S., Wong, N. H., Tan, C. L., Jusuf, S. K., Ignatius, M., & Tan, E. (2017). Impact of urban morphology on microclimate and thermal comfort in northern China. Solar energy, 155, 212-223. doi:https://doi.org/10.1016/j.solener.2017.06.027
Torbatian, S., Hoshyaripour, A., Shahbazi, H., & Hosseini, V. (2020). Air pollution trends in Tehran and their anthropogenic drivers. Atmospheric Pollution Research, 11(3), 429-442. doi:https://doi.org/10.1016/j.apr.2019.11.015
Trussell, B. (2010). The Bid Rent Gradient Theory ln Eugene, Oregon.
Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55-76. doi:https://doi.org/10.1016/j.scs.2018.08.009
Umemura, S., & Horikoshi, T. (1991). Effect of thermal condition upon the human body in urban cavity spaces. Paper presented at the Technical Papers of Annual Meeting the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan. Xiao, X. D., Dong, L., Yan, H., Yang, N., & Xiong, Y. (2018). The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society, 40, 428-439. doi:https://doi.org/10.1016/j.scs.2018.04.002
Xu, X., Sun, S., Liu, W., García, E. H., He, L., Cai, Q., . . . Zhu, J. (2017). The cooling and energy saving effect of landscape design parameters of urban park in summer: A case of Beijing, China. Energy and Buildings, 149, 91-100. doi:https://doi.org/10.1016/j.enbuild.2017.05.052
Yan, H., Wu, F., & Dong, L. (2018). Influence of a large urban park on the local urban thermal environment. Science of the Total Environment, 622, 882-891. doi:https://doi.org/10.1016/j.scitotenv.2017.11.327
Zhao, Q., Lian, Z., & Lai, D. (2021). Thermal comfort models and their developments: A review. Energy and Built Environment, 2(1), 21-33. doi:https://doi.org/10.1016/j.enbenv.2020.05.007