Subject Areas : Journal of Optoelectronical Nanostructures
Rajab yahyazadeh 1 , zahra hashempour 2
1 - Department of Physics, Khoy branch, Islamic Azad University, Khoy, Iran
2 - Department of Physics, Khoy branch, Islamic Azad University, Khoy, Iran
Keywords:
Abstract :
[1] R. Chu. GaN power switches on the rise: Demonstrated benefits and
unrealized potentials. Appl. Phys. Lett. 116 (2020) 090502.
[2] G. Hu, L. Lib, Y. Zhang. Two-dimensional electron gas in piezotronic
devices. Nano Energy. 59 (2019) 667–673.
[3] R. Yahyazadeh, Zahra hashempour, Effects of Hydrostatic Pressure and
Temperature on the AlGaN/GaN High Electron Mobility Transistors.
Journal of Interfaces, Thin films, and Low dimensional systems. 2(2)
(2019) 183-194.
[4] R Yahyazadeh, Z. Hashempour. Numerical Optimization for Source-Drain
Channel Resistance of AlGaN/GaN HEMTS. Journal of Science and
technology. 11(1) (2019) 1-9.
[5] A. Horri, S. Z. Mirmoeini. Analysis of Kirk Effect in Nanoscale Quantum
Well Heterojunction Bipolar Transistor Laser. Journal of Optoelectronical
Nanostructures. 5(2) (2020) 25-38.
98 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
[6] C. M. Duque, A. L. Morales, M. E. Mora-Ramos, C. A. Duque. Excitonrelated
21optical properties in zinc-blende GaN/InGaN quantum wells
under hydrostatic pressure, Physica Status Solidi (b). 252 (2015) 670.
[7] Z.H. Zhang, J.H. Yuan, K.X. Guo. The Combined Influence of Hydrostatic
Pressure and Temperature on Nonlinear Optical Properties of
0.3 0.7 Al Ga As /GaAs Morse Quantum Well in the Presence of an Applied
Magnetic Field. Materials, 11 (2018) 668.
[8] W. Bardyszewski, S.P. Lepkowski, H. Teisseyre, Pressure Dependence of
Exciton Binding Energy in GaN/AlxGa1-xN Quantum Wells. Acta Physica
Polonica A, 119(5) (2011) 663.
[9] A.Asgari , Kh.Khalili. Temperature dependence of InGaN/GaN multiple
quantum well based high efficiency solar cell. Solar Energy Materials&
SolarCells, 95 (2011) 3124.
[10] M. Cheraghizade. Optoelectronic Properties of PbS Films: Effect of
Carrier Gas. Journal of Optoelectronical Nanostructures. 4(2) (2019) 1-12.
[11] P. J. Stevens, M. Whitehea, G. Parry, K. Woobridge. Computer Modeling
of the Electric Field Dependent Absorption Spectrum of Multiple Quantum
Well Material. IEEE Journal of Quantum Electronics. 24 (1988) 2007.
[12] Bi. Chouchen, M. H. Gazzah, A. Bajahzar, Hafedh Belmabrouk, Numerical
Modeling of the Electronic and Electrical Characteristics of InGaN/GaNMQW
Solar Cells, Materials. 12 (2019) 1241.
[13] R. Belghouthi, J. P. Salvestrini, M. H. Gazzeh, and C. Chevallier.
Analytical modeling of polarization effects in InGaN double heterojunction
p-i-n solar cells, Superlattices and Microstructures. 100 (2016)
168.
[14] Bi. Chouchen et al., Numerical modeling of InGaN/GaN p-i-n solar cells
under temperature and hydrostatic pressure effects, AIP Advances 9
(2019) 045313.
Numerical Modeling of Electronic and Electrical Characteristics of Multiple Quantum … * 99
[15] X. Huang, Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano, 10(5) (2016) 5145.
[16] O. Ambacher, A. B Foutz, J Smart, J. R Shealy, N. G Weimann, K Chu, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys, 87 (2000) 334.
[17] S. Z. H. Minabi, A. Keshavarz, A. Gharaati. The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles. Journal of Optoelectronical Nanostructures.1(3) (2016) 62-75.
[18] O. Ambacher, J. Majewski, C. Miskys, et al. Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter, 14 (2002) 3399.
[19] Z. J. Feng, Z. J. Cheng, and H. Yue, Temperature dependence of Hall electron density of GaN-based heterostructures. Chinese Physics. 13 (2004) 1334.
[20] V. Fiorentini, F. Bernardini, and O. Ambacher, Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures, Appl. Phys. Lett, 80 (2002) 1204.
[21] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, and E. R. Weber. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate. J. Appl. Phys. 85 (1999) 2385.
[22] K.J Bala, A. J Peter, and C. W Lee. Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring. Chemical Physics. 495 (2017) 42.
[23] M. Yang et al., Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs, IEEE Trans. Electron Devices, 63 (2016) 1471.
[24] I. Vurgaftman, J. R Meyer, L. R. R Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys, 89 (2001) 5815.
100 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3
[25] S. Z. H. Minabi, A. Keshavarz, A. Gharaati. The effect of temperature on
optical absorption cross section of bimetallic core-shell nano particles.
Journal of Optoelectronical Nanostructures.1(3) (2016) 62-75.
[26] K.H. Yoo, L.R.Ram-Mohan, D.F.Nelson, Effect of nanparabolicity in
AlxGa1xN /GaAs semiconductor quantum well. Phys. Rev. B. 39 (2089) 809.
[27] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N.
W. Cheung, E. R. Weber. Reduction of the energy gap pressure coefficient
of GaN due to the constraining presence of the sapphire substrate. J. Appl.
Phys, 85 (1999) 2385.
[28] B. Jogai, Influence of surface states on the two-dimensional electron gas in
AlGaN/GaN heterojunction field-effect transistors. Journal of Applied
Physics, 93 (2003) 1631.
[29] B. Jogai, Parasitic Hole Channels in AlGaN/GaN Heterojunction
Structures, phys. stat. sol. (b). 233(3) (2002) 506.
[30] B. Chouchen et al. Numerical Modeling of the Electronic and Electrical
Characteristics of InGaN/GaN-MQW Solar Cells. Materials. 12 (2019)
1241.
[31] N.G. Anderson, Ideal theory of quantum well solar cells, J. Appl. Phys, 78
(1995) 1850.
[32] Y. Zhang, Y. Yang, Z.L. Wang. Piezo-phototronics effect on
nano/microwire solar cells. Energy Environ. Sci, 5 (2012) 6850.
[33] Z. Podlipskas et al. The detrimental effect of AlGaN barrier quality on
carrier dynamics in AlGaN/GaN interface. Scientific Reports. 9 (2019)
17346.
[34] Handbook of Nitride Semiconductors and Devices: GaN-Based Optical and
Electronic Devises, 3rd ed., Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, 2009, 767-810.
Numerical Modeling of Electronic and Electrical Characteristics of Multiple Quantum … * 101
[35] J. Nelson, Thin Film solar cell, The Physics of Solar Cells, 5th ed. Imperial College Press, London, UK: WC2H 9HC, 2003, 211-251.
[36] Q. Deng et al., An investigation on InxGa1-xN/GaN multiple quantum well solar cells, J. Phys. D Appl. Phys. 44 (2011) 265103.
[37] Y. Sefidgar, H. R. Saghai, H. G. K. Azar. Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures.4(2) (2019) 84-102.