Allelopathy and its physiological mechanisms of effectiveness in plants
Subject Areas : Environmental physiologyHamze Amiri 1 , Hossein Mohammadi Mohtasham 2
1 - Department of Biology, Lorestan University, Lorestan, Iran
2 - Department of Biology, Lorestan University, Lorestan, Iran
Keywords: Allelochemicals, Food production, Modern agriculture, Phenolic compounds, Weeds,
Abstract :
Balancing agricultural productivity with environmental sustainability presents one of the major challenges facing agriculture worldwide. The rise of herbicide-resistant weeds is causing significant economic harm, underscoring the necessity for effective weed control strategies in modern agriculture. Utilizing the allelopathic properties of certain plants can play a crucial role in weed management. These allelopathic plants produce and release metabolites into their surroundings, which negatively affect the germination and growth of neighboring weeds, thereby limiting their growth and density. Therefore, using these plants or their residues can reduce chemical herbicide usage. This natural, environmentally friendly approach, known as allelopathy, can serve as a valuable tool for weed control. Spraying fields with extracts containing allelopathic compounds can significantly decrease the use of synthetic herbicides. Allelopathy is a complex phenomenon that occurs continuously in both natural and human-made ecosystems, where one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. This review article provides insights obtained from searches in scientific databases such as Google Scholar, PubMed, Scopus, Web of Science, and SID. It introduces the concept of allelopathy, examines allelochemicals and their modes of action, and highlights the importance of using this biological phenomenon to promote sustainable agriculture.
Abdollahi, F., Amiri, H., Niknam, V., Ghanati, F. and Mahdigholi, K. (2019). Effects of static magnetic fields on the antioxidant system of almond seeds. Russian Journal Plant Physiology. 66:299-307.
Abdollahi, F., Amiri, H., Niknam, V., Ghanati, F., Mahdigholi, K., (2019). Effects of static magnetic fields on seed germination and metabolism in two species of almond. Journal Plant Process and Function 8: 115-124.
Akemo, M.C., Regnier, E.E. and Bennett, M.A. (2000). Weed suppression in spring-sown rye (Secale cereale)–Pea (Pisum sativum) cover crop mixes 1. Weed Technology 14:545–549. https:// doi. org/ 10. 1614/ 0890- 037x(2000) 014 [0545: wsissr] 2.0. co;2.
Amiri, H. (2011). The in vitro antioxidative properties of the essential oils and methanol extracts of Satureja macrosiphonia Bornm. Natural Product Research. 25(3): 232-243.
Amiri, H. (2011).Essential Oils Composition and Antioxidant Properties of Three Thymus Species. Evidence-Based Complementary and Alternative Medicine. ID 728065. doi.org/10.1155/2012/728065.
Amiri, H., Dehshiri, M.M., Alizadeh Bazgir M., Amiri, J. and Esmaili, A. (2008). Essential oil composition and secretory structures of Bunium rectangulum Boiss. & Hausskn. . Jornal Plant Environmental Physiology. 7(28): 19-26.
Araújo, C.A., Sant, C. and Morgado, A. (2021). Asteraceae family: a review of its allelopathic potential and the case of Acmella oleracea and Sphagneticola trilobata. Rodriguésia.https:// doi. org/ 10. 1590/ 2175- 78602 02172 137.
Bachheti, A., Sharma, A. and Bachheti R.K. (2020). Plant allelochemicals and their various applications. In: Mérillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Springer, Switzerland, pp 441–465. https:// doi.org/ 10. 1007/ 978-3- 319- 96397-6_ 14.
Bajwa, A.A. (2014). Sustainable weed management in conservation agriculture. Crop Protection 65:105–113. https:// doi. org/10. 1016/j. cropro. 2014. 07. 014.
Banakar, M.H., Amiri, H., Ranjbar, G.H. and Sarafraz Ardakani M.R. (2022). Evaluation and determination of the salt tolerance threshold of some fenugreek (Trigonella foenum-graecum) ecotypes at seedling emergence stage. Iran. Journal of Seed Research. 8(2): 51-67.
Barrosde Morais C.S., Silva DosSantos, L.A. and Vieira Rossetto C.A. (2014). Oilradish development agronomic affected by sunflower plant sreduces. Bioscience Journal. 30, 117–128.
Batish, D.R., Kaur, S., Singh, H.P. and Kohli, R.K. (2009). Role of rootmediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora. 204:388–395. https:// doi. org/10. 1016/j. flora. 2008. 05. 003.
Bogatek, R., Oracz, K., Gniazdowska, A. (2005). Ethylene and ABA production in germinating seeds during allelopathy stress. In: Proc 4th World Congr Allelopath Wagga Wagga, New South Wales, Australia, pp 292–296.
Borrelli, G.M. and Trono, D. (2016). Molecular approaches to genetically improve the accumulation of health-promoting secondary metabolites in staple crops-a case study: The lipoxygenase-b1 genes and regulation of the carotenoid content in pasta products. International Journal Molecular Science. 17(7):1177.https:// doi. org/ 10. 3390/ ijms1 70711 77.
Calera, M.R., Anaya, A.L. and Gavilanes Ruiz, M. (1995). Effect of phytotoxic resin glycoside on activity of H+-ATPase from plasma membrane. Journal Chemical Ecology. 21:289–297. https:// doi. org/ 10. 1007/ BF020 36718.
Cheng, F. and Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontier in Plant Science. 6:1020. https:// doi. org/ 10. 3389/ fpls. 2015. 01020.
Chou, C.H. (1999). Roles of allelopathy in plant biodiversity and sustainable agriculture. CRC Crit Rev Plant Sci 18:609636. https://doi. org/ 10. 1080/ 07352 68999 13094 14.
Corso, M., Perreau, F. and Rajjou, L. (2021). Specialized metabolites in seeds. Advances in Botanical Research. 98:35–70. https:// doi. org/ 10.1016/ bs. abr.2020. 11. 001.
Dayan, F.E., Howell, J. and Marais, J.P. (2011). Manuka oil, a natural herbicide with preemergence activity. Weed Science 59:464–469. https:// doi. org/ 10. 1614/ ws-d- 11- 00043.1.
De Bertoldi, C., De Leo, M., Braca, A. and Ercoli, L. (2009). Bioassayguided isolation of allelochemicals from Avena sativa L.: Allelopathic potential of flavone C-glycosides. Chemoecology 19:169–176. https:// doi. org/ 10. 1007/ s00049- 009- 0019-5.
Doblinski, P.M.F., Ferrarese, M.D.L.L. and Huber, D.A. (2003). Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxybenzoic acids. Brazilian Archives of Biology and Technology .46:193–198. https:// doi. org/ 10.1590/ S1516- 89132 00300 02000 09.
Doosti, B., Drikvand, R. and Amiri, H. (2008). Evaluation of lead resistance of rhus coriaria L. on germination and seedling stages in two different habitatsJournal of Plant Environmental Physiology. 7(28): 27-38.
Duke, S,O. (2010). Allelopathy: current status of research and future of the discipline: a Commentary. Allelopathy J 25:17–30.
Einhellig, F.A. (1995). “Allelopathy-currentstatusandfuturegoals,”in Allelopathy: Organisms,.Processes,.and Applications, edsA. Inderjit, K.M.M.Dakshini, and F.A.Einhellig(Washington,DC:AmericanChemicalSocietyPress),1–24.
Galán Pérez, J.A., Gámiz, B. and Celis, R. (2022). Soil modification with organic amendments and organoclays: effects onsorption, degradation, and bioactivity of the allelochemical scopoletin. Journal of Environmental Management 302:114102. https:// doi.org/ 10. 1016/J. jenvm an. 2021. 114102.
Gawronska, H. and Golisz, A. (2006). Allelopathy and biotic stresses. In: Reigosa, M.J., Pedrol, N., González, L. (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht Holand, pp 211–227. https:// doi. org/10. 1007/1- 4020- 4280-9.
Głąb, L., Sowiński, J., Bough, R. and Dayan, F.E. (2017). Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. In: Sparks DL(ed) Advances in.
Gniazdowska, A., Oracz, K. and Bogatek, R. (2004). Allelopatia— nowe interpretacje oddziaływań pomiędzy roślinami. Kosm - Probl Nauk Biol 2:207–217.
Haig, T. (2008). Allelochemicals in plants. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 63–104. https:// doi.org/ 10. 1007/ 978-0- 387- 77337-7_4.
Hernandez Tenorio, F., Miranda, A.M. and Rodríguez, C.A. (2022). Potential strategies in the biopesticide formulations: abibliometric analysis. Agronomy 12:2665. https:// doi.org/ 10. 3390/ agron omy12 112665.
Hoang Anh, L., Van Quan, N., Tuan Nghia, L. and Dang Xuan, T. (2021). Phenolic allelochemicals: achievements, limitations,and prospective approaches in weed management.Weed Biology and Management. 21:37–67. https:// doi. org/ 10. 1111/wbm. 12230.
Hosseinzadeh, Hosseinzadeh, S.R., Amiri, H. and Ismaili, A. (2016). Interaction effects of vermicompost extract and drought stress on germination indices of chickpea (Cicer arietinum L. cv. Pirouz). Iran Journal Seed Science Research. 3(1): 75-86.
Hussain, M.I., Araniti, F. and Schulz, M. (2022). Benzoxazinoids in wheat allelopathy from discovery to application for sustainable weed management. Environmenal and Experment Botany. https://doi. org/ 10. 1016/j. envex pbot. 2022. 104997.
Inderjit Keating, K.I. (1999). Allelopathy: principles, procedures, processes, and promises for biological contro. lAdvances in Agronomy. 67:141–231. https:// doi. org/ 10. 1016/ S0065- 2113(08) 60515-5.
Jabran, K., Mahajan, G., Sardana, V. and Chauhan, B.S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection. 72:57–65. https:// doi. org/ 10. 1016/j. cropro. 2015. 03. 004.
Kassam, A., Friedrich, T. and Derpsch, R. (2019). Global spread of conservation agricultureInternational Journal of Environmental Studies. 76:29–51.https:// doi. org/ 10. 1080/ 00207 233. 2018. 14949 27.
Kato Noguchi, H. (2009). Stress-induced allelopathic activity and momilactone B in rice. Plant Growth Regulation. 59:153–158. https:// doi.org/ 10. 1007/ s10725- 009- 9398-4.
Kumar, S., Abedin, M. and Singh, A.K . (2020). Role of phenolic compounds in plant defensive mechanisms. In: Lone R, Shuab R, Kamili AN (eds) Plant phenolics in sustainable agriculture. Springer, Singapore, pp 517–532. https:// doi. org/ 10. 1007/ 978‐981‐15‐4890‐1_ 22.
Lambers, H., Chapin, F.S.III. and Pons, T.L. (1998). Plant physiological ecology. Springer, Berlin Heidelberg New York.
Latif, S., Chiapusio, G. and Weston, L.A. (2017). Allelopathy and the role of allelochemicals in plant defence. In: Becard G (ed) Advances in botanical research, vol 82. Academic Press, Cambridge, pp 19–54. https:// doi. org/ 10. 1016/ bs.abr. 2016. 12. 001.
Lengai, G.M.W. and Muthomi, J.W. (2018). Biopesticides and their role in sustainable agricultural production. Journal of biosciences and medicines. 06:7–41. https:// doi. org/ 10. 4236/ jbm. 2018. 66002.
Li, Z.R., Amist, N. and Bai, L.Y. (2019). Allelopathy in sustainable weeds management. Allelopathy Journal. 48:109–138. https://doi. org/ 10. 26651/ allelo. j/ 2019- 48-2- 1249.
Lin, W.X., He, H.Q., Guo, Y.C., Liang, Y.Y. and Chen, F.Y. (2001). Rice allelopathy and its physiobiochemical characteristics. Chinese Journal of Applied Ecology. 12,871–875.
Lykogianni, M., Bempelou, E., Karamaouna, F. and Aliferis, K.A. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Science of The Total Environment. https://doi. org/ 10. 1016/j. scito tenv. 2021. 148625.
Macías, F.A., Mejías, F.J.R. and Molinillo, J.M.G. (2019). Recent advances in allelopathy for weed control: from knowledge to applications. Pest Managment Science. 75:2413–2436. https:// doi. org/ 10. 1002/ ps. 5355.
Mamolos, A.P. (2008). Significance of allelopathy in crop rotation. J Crop Prod. https:// doi. org/ 10. 1300/ J144v 04n02_ 06.
Maqbool, N. and Abdul, W. (2013). Allelopathy and abiotic stress interaction in crop plants. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy: current trends and future applications. Springer, Berlin, Heidelberg, pp 451–468. https:// doi. org/ 10. 1007/ 978-3- 642- 30595-5_ 19.
Mehdizadeh, M., Mushtaq, W. (2019). Biological control of weeds by allelopathic compounds from different plants: a bioherbicide approach. In: Egbuna C, Sawicka B (eds) Natural remedies for pest.
Misra, B.B., Das, V. and Landi, M. (2020). Short-term effects of the allelochemical umbelliferone on Triticum durum L. metabolism through GC–MS based untargeted metabolomics. Plant Science. 298:110548. https:// doi. org/ 10. 1016/
Möhring, N. and Finger, R. (2022). Pesticide-free but not organic:Adoption of a large-scale wheat production standard in Switzerland. Food Policy. 106:102188. https:// doi. org/ 10.1016/J. FOODP OL. 2021. 102188.
Mohsenzadeh, F., Chehregani, A. and Amiri, H. (2011). Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharmceutical Biology. 49 (9), 920-926.
Motmainna, M., Shukor, B.A. and Md Kamal Uddin, J . (2021).Assessment of allelopathic compounds to develop new natural herbicides: a review. Allelopathy Journal. 52:21–40.https:// doi. org/10. 26651/ allelo. j/ 2021- 52-1- 1305.
Muscolo, A., Panuccio, M.R. and Sidari, M. (2001). The effect of phenols on respiratory enzymes in seed germination. Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils. Plant Growth Regulation. 35:31–35. https://doi. org/ 10. 1023/A: 10138 97321 852.
Mushtaq, W., Siddiqui, M.B. and Hakeem, K.R. (2020). Allelopathy potential for green agriculture. Springer Nature, Berlin. https:// doi. org/ 10. 1007/ 978-3- 030- 40807-7.
Mwendwa, J.M., Weston, P.A. and Weidenhamer, J.D. (2021). Metabolic profiling of benzoxazinoids in the roots and rhizosphere of commercial winter wheat genotypes. Plant and Soil 466:467–489. https:// doi. org/ 10. 1007/s11104- 021- 04996-9.
Nair, G., Raja, S.S.S. and Vijayakumar, R. (2022). Secondary metabolites- an overview. In: Vijayakumar, R., Raja, S. (eds) Secondary metabolites—trends and reviews applied. IntechOpen, London, p 8. https:// doi. org/ 10. 5772/ intec hopen. 98129.
Nornasuha, Y. and Ismail, B.S. (2017). Sustainable weed management using allelopathic approach. Malaysian Applied Biology. 46:1–10.
OECD/FAO. (2022). OECD-FAO Agricultural Outlook 2022–2031. OECD. Accessed 15 December 2022.
Parthasarathy, A., Borrego, E.J. and Savka, M.A. (2021). Amino acid–derived defense metabolites from plants: a potential source to facilitate novel antimicrobial development. Journal of Biological Chemistry. 296:100438. https:// doi. org/ 10. 1016/j. jbc. 2021. 100438,
Peñuelas, J., Ribas Carbo, M. and Giles, L. (1996). Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. Journal of Chemical Ecology. 22:801–805. https:// doi. org/ 10. 1007/ BF020 33587.
Reiss, A., Fomsgaard, I.S., Mathiassen, S.K., Kudsk, P. (2018). Weed suppressive traits of winter cereals: allelopathy and competition. Biochemical Systematics and Ecology. 76:35–41. https:// doi. org/ 10.1016/J. BSE. 2017. 12. 001.
Rice, E. (1984). Allelopathy. Elsevier, Academic Press, Orlando,Florida, p 400.
Sakhaee, M., Asareh, M.H., Shariat, A. and BakhshiKhaniki, G.H.R. (2010).The study of allelopathic effect of Eucalyptus camaldulensis on germination and seedling growth of wheat(Triticum aestivum L.). Journal of Plant Environmental Physiology. 16(4): 58-68.
Sathishkumar, A., Srinivasan, G., Subramanian, E. and Rajesh, P. (2020). Role of allelopathy in weed management: a review. Agricultural Reviews. 41:380–386. https:// doi. org/ 10. 18805/ag.r- 2031.
Scavo, A. and Mauromicale, G. (2021). Crop allelopathy for sustainable weed management in agroecosystems: knowing the present with a view to the future. Agronomy 11:2104.https:// doi. org/ 10. 3390/ agron omy11 112104.
Schandry, N. and Becker, C. (2020). Allelopathic plants: models for studying plant–interkingdom interactions. Trends Plant Sci 25:176–185. https:// doi. org/ 10. 1016/J. TPLAN TS. 2019. 11. 004.
Soltys, D., Krasuska, U., Bogatek, R. and Gniazdowska, A. (2013). Allelochemicals as bioherbicides present and perspectives.In: Price A, Kelton J (eds) Herbicides—current research and case studies in use. InTech, London, pp 517–542.https:// doi.org/ 10. 5772/ 56185.
Šunjka, D. and Mechora, Š. (2022). An alternative source of biopesticides and improvement in their formulation—recent advances. Plants 11:1–13. https:// doi. org/ 10. 3390/ plants1122 3172.
Yoneyama, K. and Natsume, M. (2010). Allelochemicals for plant—plant and plant—microbe interactions. Compr Nat Prod II Chem Biol 4:539–561. https:// doi. org/ 10. 1016/ b978-00804 5382-8. 00105-2.
Zhao, M., Cheng, J. and Guo, B. (2018). Momilactone and related diterpenoids as potential agricultural chemicals. Journal of Agricultural and Food Chemistry. 66:7859–7872. https:// doi. org/ 10. 1021/ acs. jafc. 8b026 02.