آللوپاتی و مکانیسم های فیزیولوژیک اثر بخشی آن در گیاهان
الموضوعات :حمزه امیری 1 , حسین محمدی محتشم 2
1 - گروه زیست شناسی دانشگاه لرستان، لرستان، ایران
2 - گروه زیست شناسی، دانشگاه لرستان، لرستان، ایران
الکلمات المفتاحية: آللوشیمیایی, ترکیبات فنلی, علف هرز, تولید غذا, کشاورزی مدرن ,
ملخص المقالة :
متعادل کردن بهرهوری محصولات کشاورزی با پایداری محیطزیست یکی از چالشهای اصلی کشاورزی در سراسر جهان است. ظهور علفهای هرز مقاوم به علفکشهای مصنوعی خسارات اقتصادی زیادی ایجاد میکند، بنابراین استراتژیهای کنترل علفهای هرز در کشاورزی مدرن بسیار موردنیاز است. استفاده از ویژگی آللوپاتی گیاهان آللوپات میتواند نقش مهمی در مدیریت و کنترل علفهای هرز ایفا کند. این گیاهان از طریق تولید و ترشح متابولیتهایی که به محیط اطراف خـود رهـا (آزاد) میکننـد تأثیر منفی بر جوانهزنی و رشد علفهای هرز مجاورگذاشته و از این طریق رشد و تراکم آنها را محدود میکننـد. لـذا استفاده از این نوع گیاهان و یا بقایای آنها میتواند موجب کاهش مصرف علفکشها شیمیایی شـود. گنجاندن یک رویکرد طبیعی دوستدار محیط زیست یا همان آللوپاتی بهعنوان ابزاری در جهت کنترل علفهای هرز با رشد محصولات خاص یا سمپاشی مزارع با عصارههای حاوی ترکیبات آللوپاتیک میتواند به طور قابلتوجهی استفاده از علفکشهای شیمیایی را کاهش دهد. آللوپاتی بهعنوان یک پدیده چندبعدی در نظر گرفته میشود که به طور مداوم در اکوسیستمهای طبیعی و انسانی رخ میدهد و بهوسیله آن یک ارگانیسم مواد بیوشیمیایی تولید میکند که بر رشد، بقا، توسعه و تولیدمثل موجودات دیگر تأثیر میگذارد.
Abenavoli MR, Lupini A, Oliva S and Sorgona A. (2010). Allelochemical effects on netnitrate uptake and plasmamembrane H+ATPase activity in maize seedlings. Biol.Plant. 54, 149–153.doi:10.1007/s10535-010-0024-0.
Agronomy. vol 145. Academic Press, Cambridge, pp 43–95. https:// doi. org/ 10. 1016/ bs. agron.2017. 05. 001.
Akemo MC, Regnier EE, Bennett MA. (2000). Weed suppression in spring-sown rye (Secale cereale)–Pea (Pisum sativum) cover crop mixes 1. Weed Technol 14:545–549. https:// doi. org/ 10. 1614/ 0890- 037x(2000) 014 [0545: wsissr] 2.0. co;2.
Albuquerque MB, Santos RC, Lima LM, MeloFilho PDA, Nogueira RJMC, Câmara CAG. (2010). Allelopathy, an alternative tool to improve cropping systems. Rev.AgronSust.Dev. 31, 379–395.doi:10.1051/agro/2010031.
Araújo CA, Sant C, Morgado A . (2021). Asteraceae family: a review of its allelopathic potential and the case of Acmella oleracea and Sphagneticola trilobata. Rodriguésia.https:// doi. org/ 10. 1590/ 2175- 78602 02172 137.
Bachheti A, Sharma A, Bachheti RK. (2020). Plant allelochemicals and their various applications. In: Mérillon JM, Ramawat K (eds) Co-evolution of secondary metabolites. Springer, Switzerland, pp 441–465. https:// doi.org/ 10. 1007/ 978-3- 319- 96397-6_ 14.
Bajwa AA. (2014). Sustainable weed management in conservation agriculture. Crop Prot 65:105–113. https:// doi. org/10. 1016/j. cropro. 2014. 07. 014.
BarrosdeMorais CS, SilvaDosSantos LA and VieiraRossetto CA. (2014). Oilradish development agronomic affected by sunflower plant sreduces. Biosci.J. 30, 117–128.
Batish DR, Kaur S, Singh HP, Kohli RK. (2009). Role of rootmediated interactions in phytotoxic interference of Ageratum conyzoides with rice (Oryza sativa). Flora Morphol Distrib Funct Ecol Plants 204:388–395. https:// doi. org/10. 1016/j. flora. 2008. 05. 003.
Belz RG. (2007). Allelopathy in crop/weed interactions—an update. Pest Manag Sci Sci 63:308–326. https:// doi. org/10. 1002/ ps. 1320.
Bergmark CL, JacksonWA,Volk RJ and Blum U. (1992). Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zeamays L. Plant Physiol. 98, 639–645.doi:10.1104/pp.98.2.639.
Bogatek R, Oracz K, Gniazdowska A. (2005). Ethylene and ABA production in germinating seeds during allelopathy stress. In: Proc 4th World Congr Allelopath Wagga Wagga, New South Wales, Australia, pp 292–296.
Borrelli GM, Trono D. (2016). Molecular approaches to genetically improve the accumulation of health-promoting secondary metabolites in staple crops-a case study: The lipoxygenase-b1 genes and regulation of the carotenoid content in pasta products. Int J Mol Sci 17(7):1177.https:// doi. org/ 10. 3390/ ijms1 70711 77.
Calera MR, Anaya AL, Gavilanes-Ruiz M. (1995). Effect of phytotoxic resin glycoside on activity of H+-ATPase from plasma membrane. J Chem Ecol 21:289–297. https:// doi. org/ 10. 1007/ BF020 36718.
Cheng F, Cheng Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020. https:// doi. org/ 10. 3389/ fpls. 2015. 01020.
Chou CH. (1999). Roles of allelopathy in plant biodiversity and sustainable agriculture. CRC Crit Rev Plant Sci 18:609636. https://doi. org/ 10. 1080/ 07352 68999 13094 14.
Corso M, Perreau F, Rajjou L. (2021). Specialized metabolites in seeds. Adv Bot Res 98:35–70. https:// doi. org/ 10.1016/ bs. abr.2020. 11. 001.
Dayan FE, Howell J, Marais JP.(2011). Manuka oil, a natural herbicide with preemergence activity. Weed Sci 59:464–469. https:// doi. org/ 10. 1614/ ws-d- 11- 00043.1.
De Bertoldi C, De Leo M, Braca A, Ercoli L. (2009). Bioassayguided isolation of allelochemicals from Avena sativa L.: Allelopathic potential of flavone C-glycosides. Chemoecology 19:169–176. https:// doi. org/ 10. 1007/ s00049- 009- 0019-5.
Disease And Weed Control. Academic Press, Cambridge, pp 107–117. https:// doi. org/ 10.1016/ B978-0- 12- 819304- 4. 00009-9.
Doblinski PMF, Ferrarese MDLL, Huber DA. (2003). Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxybenzoic acids. Braz Arch Biol Technol 46:193–198. https:// doi. org/ 10.1590/ S1516- 89132 00300 02000 09.
Duke SO. (2010). Allelopathy: current status of research and future of the discipline: a Commentary. Allelopath J 25:17–30.
Einhellig FA. (1995). “Allelopathy-currentstatusandfuturegoals,”in Allelopathy: Organisms,.Processes,.and Applications, edsA. Inderjit, K.M.M.Dakshini, and F.A.Einhellig(Washington,DC:AmericanChemicalSocietyPress),1–24.
Galán-Pérez JA, Gámiz B, Celis R. (2022). Soil modification with organic amendments and organoclays: effects onsorption, degradation, and bioactivity of the allelochemical scopoletin. J Environ Manag 302:114102. https:// doi.org/ 10. 1016/J. JENVM AN. 2021. 114102.
Gawronska H, Golisz A. (2006). Allelopathy and biotic stresses. In: Reigosa, M.J., Pedrol, N., González, L. (eds) Allelopathy: a physiological process with ecological implications. Springer, Dordrecht Holand, pp 211–227. https:// doi. org/10. 1007/1- 4020- 4280-9.
Głąb L, Sowiński J, Bough R, Dayan FE. (2017). Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. In: Sparks DL(ed) Advances in.
Gniazdowska A, Oracz K, Bogatek R. (2004). Allelopatia— nowe interpretacje oddziaływań pomiędzy roślinami. Kosm - Probl Nauk Biol 2:207–217.
Haig T. (2008). Allelochemicals in plants. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 63–104. https:// doi.org/ 10. 1007/ 978-0- 387- 77337-7_4.
Hernandez-Tenorio F, Miranda AM, Rodríguez CA. (2022). Potential strategies in the biopesticide formulations: abibliometric analysis. Agronomy 12:2665. https:// doi.org/ 10. 3390/ agron omy12 112665.
Hoang Anh L, Van Quan N, Tuan Nghia L, Dang Xuan T. (2021). Phenolic allelochemicals: achievements, limitations,and prospective approaches in weed management.Weed Biol Manag 21:37–67. https:// doi. org/ 10. 1111/wbm. 12230.
Hussain MI, Araniti F, Schulz M. (2022). Benzoxazinoids in wheat allelopathy from discovery to application for sustainable weed management. Environ Exp Bot. https://doi. org/ 10. 1016/j. envex pbot. 2022. 104997.
Inderjit Keating KI. (1999) Allelopathy: principles, procedures, processes, and promises for biological control. Adv Agron 67:141–231. https:// doi. org/ 10. 1016/ S0065- 2113(08) 60515-5.
Jabran K, Mahajan G, Sardana V, Chauhan BS. (2015). Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65. https:// doi. org/ 10. 1016/j. cropro. 2015. 03. 004.
Kassam A, Friedrich T, Derpsch R. (2019). Global spread of conservation agriculture. Int J Environ Stud 76:29–51.https:// doi. org/ 10. 1080/ 00207 233. 2018. 14949 27.
Kato-Noguchi H. (2009). Stress-induced allelopathic activity and momilactone B in rice. Plant Growth Regul 59:153–158. https:// doi.org/ 10. 1007/ s10725- 009- 9398-4.
Kumar S, Abedin M, Singh AK . (2020). Role of phenolic compounds in plant defensive mechanisms. In: Lone R, Shuab R, Kamili AN (eds) Plant phenolics in sustainable agriculture. Springer, Singapore, pp 517–532. https:// doi. org/ 10. 1007/ 978‐981‐15‐4890‐1_ 22.
Lambers H, Chapin FS III, Pons TL. (1998). Plant physiological ecology. Springer, Berlin Heidelberg New York.
Latif S, Chiapusio G, Weston LA. (2017). Allelopathy and the role of allelochemicals in plant defence. In: Becard G (ed) Advances in botanical research, vol 82. Academic Press, Cambridge, pp 19–54. https:// doi. org/ 10. 1016/ bs.abr. 2016. 12. 001.
Lengai GMW, Muthomi JW, Mbega ER. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci.
Lengai, GMW, Muthomi JW. (2018). Biopesticides and their role in sustainable agricultural production. J Biosci Med 06:7–41. https:// doi. org/ 10. 4236/ jbm. 2018. 66002.
Li ZR, Amist N, Bai LY. (2019). Allelopathy in sustainable weeds management. Allelopath J 48:109–138. https://doi. org/ 10. 26651/ allelo. j/ 2019- 48-2- 1249.
Lin WX, He HQ, Guo YC, Liang YY and Chen FY. (2001). Rice allelopathy and its physiobiochemical characteristics. Chin.J.Appl.Ecol. 12,871–875.
Lykogianni M, Bempelou E, Karamaouna F, Aliferis KA. (2021). Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci Total Environ. https://doi. org/ 10. 1016/j. scito tenv. 2021. 148625.
Macías FA, Mejías FJR, Molinillo JMG. (2019). Recent advances in allelopathy for weed control: from knowledge to applications. Pest Manag Sci 75:2413–2436. https:// doi. org/ 10. 1002/ ps. 5355.
Mamolos AP. (2008). Significance of allelopathy in crop rotation. J Crop Prod. https:// doi. org/ 10. 1300/ J144v 04n02_ 06.
Maqbool N, Abdul W. (2013). Allelopathy and abiotic stress interaction in crop plants. In: Cheema, Z., Farooq, M., Wahid, A. (eds) Allelopathy: current trends and future applications. Springer, Berlin, Heidelberg, pp 451–468. https:// doi. org/ 10. 1007/ 978-3- 642- 30595-5_ 19.
Mehdizadeh M, Mushtaq W. (2019). Biological control of weeds by allelopathic compounds from different plants: a bioherbicide approach. In: Egbuna C, Sawicka B (eds) Natural remedies for pest.
Misra BB, Das V, Landi M. (2020). Short-term effects of the allelochemical umbelliferone on Triticum durum L. metabolism through GC–MS based untargeted metabolomics. Plant Sci 298:110548. https:// doi. org/ 10. 1016/
Möhring N, Finger R. (2022). Pesticide-free but not organic:Adoption of a large-scale wheat production standard in Switzerland. Food Policy 106:102188. https:// doi. org/ 10.1016/J. FOODP OL. 2021. 102188.
Motmainna M, Shukor BA, Md Kamal Uddin J . (2021).Assessment of allelopathic compounds to develop new natural herbicides: a review. Allelopath J 52:21–40.https:// doi. org/10. 26651/ allelo. j/ 2021- 52-1- 1305.
Muscolo A, Panuccio MR, Sidari M. (2001). The effect of phenols on respiratory enzymes in seed germination. Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils. Plant Growth Regul 35:31–35. https://doi. org/ 10. 1023/A: 10138 97321 852.
Mushtaq W, Siddiqui MB, Hakeem KR. (2020). Allelopathy potential for green agriculture. Springer Nature, Berlin. https:// doi. org/ 10. 1007/ 978-3- 030- 40807-7.
Mwendwa JM, Weston PA, Weidenhamer JD. (2021). Metabolic profiling of benzoxazinoids in the roots and rhizosphere of commercial winter wheat genotypes.Plant Soil 466:467–489. https:// doi. org/ 10. 1007/s11104- 021- 04996-9.
Nair G, Raja SSS, Vijayakumar R. (2022). Secondary metabolites- an overview. In: Vijayakumar, R., Raja, S. (eds) Secondary metabolites—trends and reviews applied. IntechOpen, London, p 8. https:// doi. org/ 10. 5772/ intec hopen. 98129.
Nornasuha Y, Ismail BS. (2017). Sustainable weed management using allelopathic approach. Malays Appl Biol 46:1–10.
OECD/FAO. (2022). OECD-FAO Agricultural Outlook 2022–2031. OECD. Accessed 15 December 2022.
Parthasarathy A, Borrego EJ, Savka MA. (2021), Amino acid–derived defense metabolites from plants: a potential source to facilitate novel antimicrobial development. J Biol Chem 296:100438. https:// doi. org/ 10. 1016/j. jbc. 2021. 100438,
Peñuelas J, Ribas-Carbo M, Giles L. (1996). Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase. J Chem Ecol 22:801–805. https:// doi. org/ 10. 1007/ BF020 33587.
Reiss A, Fomsgaard IS, Mathiassen SK, Kudsk P. (2018). Weed suppressive traits of winter cereals: allelopathy and competition. Biochem Syst Ecol 76:35–41. https:// doi. org/ 10.1016/J. BSE. 2017. 12. 001.
Rice E. (1984). Allelopathy. Elsevier, Academic Press, Orlando,Florida, p 400.
Sathishkumar A, Srinivasan G, Subramanian E, Rajesh P. (2020). Role of allelopathy in weed management: a review. Agric Rev 41:380–386. https:// doi. org/ 10. 18805/ag.r- 2031.
Scavo A, Mauromicale G. (2021). Crop allelopathy for sustainable weed management in agroecosystems: knowing the present with a view to the future. Agronomy 11:2104.https:// doi. org/ 10. 3390/ agron omy11 112104.
Schandry N, Becker C. (2020). Allelopathic plants: models for studying plant–interkingdom interactions. Trends Plant Sci 25:176–185. https:// doi. org/ 10. 1016/J. TPLAN TS. 2019. 11. 004.
Soltys D, Krasuska U, Bogatek R, Gniazdowska A. (2013).Allelochemicals as bioherbicides present and perspectives.In: Price A, Kelton J (eds) Herbicides—current research and case studies in use. InTech, London, pp 517–542.https:// doi.org/ 10. 5772/ 56185.
Šunjka D, Mechora Š. (2022). An alternative source of biopesticides and improvement in their formulation—recent advances. Plants 11:1–13. https:// doi. org/ 10. 3390/ plants1122 3172.
Yoneyama K, Natsume M. (2010). Allelochemicals for plant—plant and plant—microbe interactions. Compr Nat Prod II Chem Biol 4:539–561. https:// doi. org/ 10. 1016/ b978-00804 5382-8. 00105-2.
Zobel AM, Clarke PA. (1999). Production of phenolics in seedlings of Acer saccharum and Acer platanoides in response to UV-A irradiation and heavy metals. Allelopath J 6:21–34.
Zhao M, Cheng J, Guo B. (2018). Momilactone and related diterpenoids as potential agricultural chemicals. J Agric Food Chem 66:7859–7872. https:// doi. org/ 10. 1021/ acs. jafc. 8b026 02.