بررسی اثرات شرایط مرزی مختلف بر رفتار آکوستیکی صفحات ساندویچی دو جداره با لایه متخلخل میانی
Subject Areas : Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineeringمحمدحسن شجاعی فرد 1 , روح ا... طالبی 2 , رضا احمدی 3 , مائده امیرپور ملا 4
1 - استاد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران.
2 - استادیار، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران.
3 - دانشجوی دکتری، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران
4 - کارشناس ارشد، دانشکده مهندسی خودرو، دانشگاه علم و صنعت ایران.
Keywords: صفحات دوجداره, لایه متخلخل, افت انتقال صوت, تحلیل انرژی آماری, شرایط مرزی,
Abstract :
در این مقاله تحلیل رفتار آکوستیکی صفحات ساندویچی دوجداره با لایه متخلخل میانی به منظور بررسی اثرات استفاده از شرایط مرزی مختلف بر روی لایه متخلخل و نیز شناسایی پارامترهای مؤثر بر روی افت انتقال صوت این سازهها و میزان تأثیر هر یک در شرایط مرزی مختلف به روش تحلیلی مورد مطالعه قرار گرفته است. ابتدا بر اساس تئوری بایوت و با در نظر گرفتن اتصال لزجت و اینرسی در نوشتن معادلات دینامیک انتقال تنش و نیز اتصال گرمایی و الاستیک در نوشتن معادلات تنش-کرنش مواد متخلخل، معادلات حاکم بر انتشار موج بهدست میآیند. سپس با اعمال شرایط مرزی مختلف و با استفاده از حل همزمان این معادلات و با نوشتن کد مربوطه در MATLAB، ضریب افت انتقال صوت (TL) سازه به روش تحلیلی محاسبه میشود. نتایج حل تحلیلی با نتایج حل تحلیل انرژی آماری (SEA) و دادههای آزمایشگاهی موجود در این زمینه مقایسه شده و پس از اطمینان از صحت آنها، به شناسایی و بررسی سایر پارامترهای مؤثر بر روی افت انتقال صوت این سازهها و میزان تأثیر هر یک در شرایط مرزی مختلف پرداخته شده است. نتایج نشان میدهند نحوه اتصال لایه متخلخل به صفحه دوجداره و نوع شرایط مرزی آن نقش مهمی در چگونگی افت انتقال صوت و پارامترهای مؤثر بر آن خواهند داشت.
[1] Bolton J. S., Shiau N. M. and Kang Y. J., , Sound Transmission Through Multi-Panel Structures Lined with Elastic porous Materials, J. of Sound and Vibration, 191(3-4), 1996, pp. 317-347.
[2] Fahy F. J., , Foundation of Engineering Acoustics, Academic Press, 2001.
[3] Rayleigh J. W. S., The Theory of Sound, Vol. II, Art. 351, Dover Publication, New York, 1945.
[4] Zwikker C. and Kosten C. W., Sound Absorbing Materials, Elsevier Press, Amsterdam, 1949.
[5] Biot M. A., , Theory of Propagation of Elastic Waves in a Fluid-Structural porous Solid I, Low Frequency Range, J. of Acoustical Society of America, Vol. 28, No. 2, 1956, pp. 168-178.
[6] Biot M. A., Theory of Propagation of Elastic Waves in a Fluid-Structural porous Solid II, High Frequency Range, J. of Acoustical Society of America, Vol. 28, No. 2, 1956, pp. 179-191.
[7] Atalla N., Panneton R. and Deberdue P., A Mixed Displacement-Pressure Formulation for Poroelastic Materials, J. of Acoustical Society of America, Vol. 104, No. 3, 1998, pp. 1444-1452.
[8] Segard F. C., Atalla N. and Nicolas J., A Numerical Model for the Low Frequency Diffuse Field Sound Transmission Loss of Double-wall Sound Barriers with Elastic Porous Linings, J. of Acoustical Society of America, Vol. 108, No. 6, 2000, pp. 2865-2872.
[9] Bolton J. S. and Green E. R., Normal incidence sound transmission through double-panel systems lined with relatively stiff, reticulated polyurethane foam, Applied Acoustics. 39, 1993, pp. 23–51.
[10] Bolton J. S. and Kang Y. J., Elastic porous materials for sound absorption and transmission control, Proceedings of SAE Noise and Vibration Conference, 971878, 1997, pp. 77-91.
[11] Bolton J. S., Heng-Yi Lai, katragadda S. and Alexander J. H., Layered Fibrous Treatment for a Sound Absorption and Transmission Control, SAE 971878, 1997, pp. 2576-2590.
[12] Tadeu A., Antonio J., Mateus D., Sound insulation provided by single and double panel walls, a comparison of analytical solutions versus experimental results, Applied Acoustics, 65, 2004, pp. 15-29.
[13] Tanneau O., Casimir J. B. and Lamary P., Optimization of multilayered panels with poroelastic components for an acoustical transmission objective, J. of Acoustical Society of America, 120 (3), 2006, pp. 1227-1238.
[14] Ghosh A.K., Williams A.D., Zucker J.M., Mathews J.L., Spinhirne N. , An Experimental Investigation into the Acoustic Characteristics of Fluid-filled Porous Structures-A Simplified Model of the Human Skull Cancellous Structure, Experimental Mechanics, 48, 2008, pp. 139-152.
[15] Xin, F.X., Lu, T.J., Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption, J. of Acoustical Society of America, 129, 2011, pp. 1919-1934.
[16] Daneshjou K., Ramezani H., Talebitooti R., Wave transmission through laminated composite double-walled cylindrical shell lined with porous materials, Applied Mathematics and Mechanics, 32(6), 2011, pp. 701–718.
[17] Allard J.F., Propagation of sound in porous media: modeling sound absorbing materials, Elsevier Science Publishers LTD., 1993.
[18] Kang Y. J. & Bolton J. S., A finite element model for sound transmission through foam-lined double-panel structures, J. of Acoustical Society of America, 99, 1996, pp. 2755–2765.
[19] Lee J.H. and Kim J., Simplified method to solve sound transmission through structures lined with porous material, J. of Acoustical Society of America, 110, 2001, pp. 2282-2294.
[20] A. D. Pierce, 1981, Acoustics, New York: McGraw Hill.
[21] Mulholland K. A., Parbrook H. D. and Cummings A., The Transmission Loss of Double Panels, J. Sound and Vib., 6, 1967, pp. 324–334.
[22] AutoSEA2 User's Guide, ESI Group., July 2004.