Investigating the phytochemical characteristics of seven salvia species native to Iran
Subject Areas : Journal of Plant Ecophysiologyzahra aghaee 1 , Ardalan Alizadeh 2 , Mehrzad Honarvar 3 , Ramin Babadaei Samani 4
1 - PhD student in the field of Physiology and Medicinal Plant Breeding, Islamic Azad University, Estehban Branch, Estehban, Iran.
2 - Department of Medicinal and Aromatic Plants, Estahban Branch, Islamic Azad University, Estahban, Iran.
3 - Department of Medicinal and Aromatic Plants, Estahban Branch,Islamic Azad University, Estahban, Iran.
4 - Department of Medicinal and Aromatic Plants, Estahban Branch,Islamic Azad University, Estahban, Iran
Keywords: Antioxidant properties, Salvia species, Polyphenol compounds,
Abstract :
Salvia belongs to the mint family and is one of the medicinal plants that has proven its antimicrobial, antioxidant, anti-inflammatory and anti-malarial properties for the essential oils and extracts of these plants based on recent research. In the present thesis, the aerial part of seven plant species of Salvia including Salvia sharifii, S. aegyptiaca, S. santolinifolia, S. compressa, S. eremophila, S. macilenta, S. macrosiphon in the spring of 2020, in the stage of full flowering by natural habitat different from Hormozgan province were collected. The study of volatile compounds of these species by GC / MS method led to the identification and determination of compounds such as α –Pinene, Linalool, Limonene, (E)-Caryophyllene, Caryophyllene oxide, Geraniol, Borneol, Menthol and p-Cymene. DPPH method evaluated the antioxidant properties of methanolic extracts of seven species of Salvia. The highest IC50 belonged to S. aegyptiaca and santolinifolia and there was no significant difference with each other and the lowest IC50 belonged to S. macilenta. The highest percentage of free radical scavenging belonged to S. macilenta at a concentration of 1600 μg / ml. HPLC was used to measure the polyphenolic compounds of methanolic extracts of Salvia species. A total of 17 compounds were identified in methanolic extracts, of which only were detected Hesperetin, Rosmarinic acid, Trans-ferulic acid, Eugenol, Hesperedin, Carvacrol, Coumarin, Quercetin and Catechin. The results of this study showed that the amount of total phenol in S. eremophila species was the highest and was significantly different from other species.
ایزدی، ز. و ن. میرزایی. 1399. شناسایی ترکیبات شیمیایی و بررسی خواص آنتی اکسیدانی و ضدمیکروبی اسانس گیاه مریم گلی (Salvia officinalis) درزمانهای مختلف برداشت. مجله دانشگاه علوم پزشکی قم. جلد 14، شماره 9: 1-15.
جمشیدی، ا. م.، م. امینزاده، ح. آذرنیوند و م. عابدی. 1385. تأثیر ارتفاع بر کیمت و کیفیت اسانس گیاه آویشن کوهی. فصلنامه گیاهان دارویی. جلد 5، شماره 18: 22-17.
خلیلی، م. و م. ع. ابراهیم زاده. 1393. آنتی اکسیدان ها و برخی از روشهای متداول اندازهگیری آنها، مقاله مروری. مجله دانشگاه علوم پزشکی مازندران. جلد 24، شماره 120: 208-188.
فتوت، م.، ط. رجبیان، ع. صبورا، ع. ر. سلامی، و ا. سلطان مایوان. 1394. انگشت نگاری ترکیبات فنولی و فلاونوئیدی در برخی گونههای مریم گلی ایران با روش TLC، با رویکرد کموتاکسونومی، مجله تاکسونومیک و بیوسیستماتیک. جلد 7، شماره 24: 94-75.
راحمی کاریزکی، ع.، ق. ع. رسام، ک. فرامرزی، م. علویان پطرودی، و ن. خلیلی اقدم. 1399. بررسی تأثیر زمان برداشت و روشهای مختلف خشک کردن بر صفات کمی و کیفی گیاه دارویی مرزه. مجله زیست فناوری گیاهان دارویی. جلد 6، شماره 1: 83-70.
Al‐Jaber H.I. Obeidat S.M. Afifi F.U. and M.H. Abu Zarga. 2020. Aroma Profile of Two Populations of Salvia verbenaca Collected from Two Bio‐Geographical Zones from Jordan. Chem. Biodivers. 17(2): 1900553.
Asadi S. Ahmadiani A. Esmaeili M.A. Sonboli A. Ansari N. and F. Khodagholi. 2010. In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study. Food Chem. Toxical. 48(5): 1341-1349.
Bahadori M. B. Valizadeh H. Asghari B. Dinparast L. Bahadori, S. and M. Moridi Farimani. 2016. Biological activities of Salvia santolinifolia Boiss. A multifunctional medicinal plant. Curr. Bioact. Compd. 12(4): 297-305.
Bailen M. Julio L.F. Diaz C.E. Sanz J. Martínez-Díaz R.A. Cabrera R. Burillo J. and A. Gonzalez-Coloma. 2013. Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind Crops Prod. 49: 102-107.
Chalker-Scott L. and L.H. Fuchigami. 2018. The role of phenolic compounds in plant stress responses. In Low temp. stress physiol. in crops. 67-80.
Emami S.A. Asili J. HosseinNia S. Yazdian-Robati R. Sahranavard M. and Z. Tayarani-Najaran. 2016. Growth inhibition and apoptosis induction of essential oils and extracts of Nepeta cataria L. on human prostatic and breast cancer cell lines. Asian Pac. J. Cancer prev. 17: 125-130.
iruzi O. Miri R. Asadollahi M. Eslami S. and A.R. Jassbi. 2013. Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven Salvia species from Iran. Iran J. Pharm. Res. 12(4): 801.
Gohari A.R. Hajimehdipoor H. Saeidnia S. Ajani Y. and A. Hadjiakhoondi. 2011. Antioxidant activity of some medicinal species using FRAP assay. J. Med. Plant. 10: 54-60.
Kalia K. Sharma K. Singh H.P. and B. Singh. 2008. Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC. J. Agric. Food Chem. 56(21): pp.10129-10134.
Kedare S.B. and R.P. Singh. 2011. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 48(4): 412-422.
Lattanzio V. 2013. Phenolic compounds: introduction 50. Nat. Prod. 1543-1580.
Lutz M. Henríquez C. and M. Escobar. 2011. Chemical composition and antioxidant properties of mature and baby artichokes (Cynara scolymus L.), raw and cooked. J. Food Compos. Anal. 24(1): 49-54.
Luz T.R.S.A. Leite J.A.C. de Mesquita L.S.S. Bezerra S.A. Silveira D.P.B. de Mesquita J.W.C. Gomes R.E.C. Vilanova C.M. de Sousa Ribeiro M.N. do Amaral F.M.M. and D.F. Coutinho. 2020. Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. Ind. Crops Prod. 153: 112600.
Moraes-de-Souza R.A. Oldoni T.L.C. Regitano-d'Arce M.A.B. and S.M. Alencar. 2008. Antioxidant activity and phenolic composition of herbal infusions consumed in brazil activid ad antioxidante y compuestos fenólicos en infusiones herbarias consumid as en Brasil. CYTA-J. Food. 6(1): 41-47.
Ozkan G. Sagdic O. Gokturk R.S. Unal O. and S. Albayrak. 2010. Study on chemical composition and biological activities of essential oil and extract from Salvia pisidica. LWT-Food Sci. Technol. 43(1): 186-190.
Pietrzak W. and R. Nowak. 2021. Impact of Harvest Conditions and Host Tree Species on Chemical Composition and Antioxidant Activity of Extracts from Viscum album L. Mol. 26(12): 3741.
Rguez S. Msaada K. Daami-Remadi M. Chayeb I. Bettaieb Rebey I. Hammami M. Laarif A. and I. Hamrouni-Sellami. 2019. Chemical composition and biological activities of essential oils of Salvia officinalis aerial parts as affected by diurnal variations. Plant Biosystems-An Int. J. Plant Biol. 153(2): 264-272.
Russo A. Formisano C. Rigano D. Senatore F. Delfine S. Cardile V. Rosselli S. and M. Bruno. 2013. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem. Toxic. 55: 42-47.
Salinas M. Bec N. Calva J. Ramírez J. Andrade J.M. Vidari G. Larroque C. and C. Armijos. 2020. Chemical Composition and Anticholinesterase Activity of the Essential Oil from the Ecuadorian Plant Salvia pichinchensis Benth. Rec. Nat. Prod. 95-109.
Sampaio B.L. and F.B.D. Costa. 2018. Influence of abiotic environmental factors on the main constituents of the volatile oils of Tithonia diversifolia. Rev. Bras. Farmacogn. 28: 135-144.
Shahbazi Y. Shavisi N. and E. Mohebi. 2016. Potential application of Ziziphora clinopodioides essential oil and nisin as natural preservatives against Bacillus cereus and Escherichia coli O157: H7 in commercial barley soup. J. Food Saf. 36(4): 435-441.
Yeddes W. Aidi Wannes W. Hammami M. Smida M. Chebbi A. Marzouk B. and M. Saidani Tounsi. 2018. Effect of environmental conditions on the chemical composition and antioxidant activity of essential oils from Rosmarinus officinalis L. growing wild in Tunisia. J. Essen. Oil Bear.Plants, 21(4): 972-986.
Yeshi K. Crayn D. Ritmejerytė E. and P. Wangchuk. 2022. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Mol. 27(1): 313.
Yesil-Celiktas O. Girgin G.Ö.Z.D.E. Orhan H.İ.L.M.İ. Wichers H.J. Bedir E.R.D.A.L. and F. Vardar-Sukan. 2007. Screening of free radical scavenging capacity and antioxidant activities of Rosmarinus officinalis extracts with focus on location and harvesting times. Eur. Food Res. Technol. 224(4): 443-451.
Zetterström S. 2012. Isolation and synthesis of curcumin. Bachelor's Thesis, Linköping University Department of Physics. Chemistry and Biology.
_||_