A new subclass of harmonic mappings with positive coefficients
Subject Areas : Complex AnalysisA. R. Haghighi 1 , N. Asghary 2 , A. Sedghi 3
1 - Department of Mathematics, Technical and Vocational, University (TVU), Tehran, Iran
2 - Department of Mathematics, Islamic Azad University, Central Tehran Branch,
Tehran, Iran
3 - Department of Mathematics, Islamic Azad University, Central Tehran Branch,
Tehran, Iran
Keywords:
Abstract :
[1] J. Clunie, T. Sheil-Small, Univalent functions, Ann. Acad. Sci. Fenn. Series A. 9 (1984), 3-25.
[2] K. K. Dixit, S. Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamk. J. Math. 41 (3) (2010), 261-269.
[3] A. R. Haghighi, A. Sadeghi, N. Asghary, A subclass of harmonic univalent functions, Acta Univ. Apul. 38 (2014), 1-10.
[4] S. Y. Karpuzogullari, M. Özturk, M. Y. Karadeniz, A subclass of harmonic univalent functions with negative coefficients, App. Math. Comp. 142 (2003), 469-476.
[5] St. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), 521-528.
[6] H. Silverman, Univalent functions with negative coefficients, J. Math. Anal. App. 220 (1998), 283-289.