Spectral triples of weighted groups
Subject Areas : Abstract harmonic analysisM. Amini 1 , Kh. Shamsolkotabi 2
1 - Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran 14115-134, Iran
2 - Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran 14115-134, Iran
Keywords:
Abstract :
[1] M. Amini, K. Shamsolkotabi, Spectral geometry of weighted groups, preprint.
[2] W. Arendt, R. Nittka, W. Peter, F. Steiner, Weyls law: Spectral properties of the Laplacian in Mathematics and Physics, in: Mathematical analysis of evolution, information, and complexity, W. Arendt and W.P. Schleich (Eds.), Wiley-VCH, Weinheim, (2009), 1-71.
[3] P. Bertozzini, R. Conti, W. Lewkeeratiyutkul, A category of spectral triples and discrete groups with length function, Osaka J. Math. 43 (2) (2006), 327-350.
[4] P. Bertozzini, R. Conti, W. Lewkeeratiyutkul, Categorical non-commutative geometry, Journal of Physics: Conference Series. 346 (2012), 1-9.
[5] A. Connes, Noncommutative geometry, Academic Press, New York, 1994.
[6] A. Connes, Noncommutative geometry and reality, J. Math. Phys. 36 (11) (1995), 6194-6231.
[7] A. Connes, Compact metric spaces, Fredholm modules and hyperfiniteness, Ergodic Theory Dynam. Systems. 9 (1989), 207-220.
[8] A. Connes, On the spectral characterization of manifolds, (2008), arXiv:0810.2088.
[9] A. Connes, H. Moscovici, The local index formula in noncommutative geometry, Geometry and Funct. Analysis. 5 (1995), 174-243.
[10] J. M. Gracia-Bondia, H. Figueroa, J.C. Varilly, Elements of noncommutative geometry, Birkhauser, Boston, 2000.
[11] V. Ivrii, 100 years of Weyl's law, Bulletin of Mathematical Sciences. 6 (2016), 379-452.
[12] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly. 73 (1966), 1-23.
[13] H. A. Lorentz, Alte und neue fragen der Physik, Physikal. Zeitschr. 11 (1910), 1234-1257.
[14] A. Sommerfeld, Die Greensche funktion der schwingungsgleichung fur ein beliebiges gebiet, Physikal. Zeitschr. 11 (1910), 1057-1066.
[15] H. Weyl, Uber die asymptotische verteilung der eigenwerte, Nachr. Konigl. Ges. Wiss. Gottingen. (1911), 110-117.
[16] H. Weyl, Das asymptotische verteilungsgesetz linearen partiellen differentialgleichungen, Math. Ann. 71 (1912), 441-479.
[17] H. Weyl, Uber die abhangigkeit der eigenschwingungen einer membran von deren begrenzung, J. Reine Angew. Math. 141 (1912), 1-11.
[18] H. Weyl, Uber die randwertaufgabe der strahlungstheorie und asymptotische spektralgeometrie, J. Reine Angew. Math. 143 (1913), 177-202.
[19] H. Weyl, Das asymptotische verteilungsgesetz der eigenschwingungen eines beliebig gestalteten elastischen korpers, Rend. Circ. Mat. Palermo. 39 (1915), 1-49.