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Spectral triples of weighted groups
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Abstract. We study spectral triples on (weighted) groups and consider functors between the
categories of weighted groups and spectral triples. We study the properties of weights and
the corresponding functor for spectral triples coming from discrete weighted groups.
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1. Introduction

Spectral triples play a major role in mathematical physics and differential geometry,
specially in studying compact oriented Riemannian spin manifolds. Alain Connes showed
that the Dirac operator on the square integrable sections of the spinor bundle plus the
algebra of complex smooth functions on a compact oriented Riemannian spin manifold
can encode both the smooth and spin structures of the manifold [8].

This notion is related to spectral geometry. In 1911, Hermann Weyl proved the follow-
ing remarkable asymptotic formula describing distribution of (large) eigenvalues of the
Dirichlet Laplacian in a bounded domain X ⊆ Rd,

N(λ) = (2π)−dωdvol(X)λd/2(1 + o(1)), as λ → +∞,

where N(λ) is the number of those eigenvalues of the (positive) Laplacian, which are
bounded above by λ, ωd is the volume of the unit ball in Rd, and vol(X) is the volume
of X.
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This formula was actually conjectured independently by Arnold Sommerfeld [14] and
Hendrik Lorentz [13] in 1910, who stated the Weyl’s Law as a conjecture based on the
book of Lord Rayleigh ’The Theory of Sound’ (1887) (for more details and historical
notes, see [2].

Weyl published several papers [15–19] during 1911-1915, all devoted to the eigenvalue
asymptotic for the Laplace operator (and also the elasticity operator) in a bounded
domain with regular boundary [11]. Laplacian also was used in the acoustic equation
[12].

Alain Connes and Henri Moscovici defined the spectral triples [9]. Connes used this
idea to define a non commutative spin Riemannian manifold [6, 8]. One canonical way to
build spectral triples, as suggested by Connes in [5], is to use a (discrete) group with a
given length function or a weight. It is natural to ask if this correspondence is functorial.
This is answered affirmatively in [3], where the authors study the condition on the weight
on a group which guarantees the existence of the corresponding spectral triple. They also
construct a covariant functor from a subcategory of weighted groups to the category of
spectral triple (and define an appropriate notion of morphisms in the latter category).
In a forthcoming paper [1], we study the spectral geometry of weighted groups and find
the relation between Weyl’s law (in spectral geometry) and the polynomial growth rate
(in geometric group theory).

In this paper, we give a contravariant functor between the category of weighted groups
and the category of spectral triples with much weaker conditions on the weight. Some
classes of morphisms (weaker than weighted morphisms) are defined and their properties
are investigated. The paper is organized as follows. Section 1 (the current section) was
devoted to the description of the goals and motivations of the paper. In section 2 we
review preliminaries on spectral triples and discrete weighted groups. In section 3, the
categories of weighted groups and spectral triples are discussed and some contravariant
functors between those are constructed.

2. spectral triples and weighted groups

Alain Connes [3, 7, 8, 10] has proposed a set of axioms for non-commutative manifolds,
which are analogues to those for compact orientable spin Riemannian manifolds. this
is done via the notion of a (compact) spectral triple or an (unbounded) K-cycle [3]. A
(compact) spectral triple is given by a triple (A,H, D), consisting of

• a unital pre-C∗-algebra A;

• a representation π : A → B(H);

• a (not necessarily bounded) densely defined, self-adjoint operator D on H, called the
Dirac operator, such that, a) the resolvent (D − λ)−1 is a compact operator, for each
λ ∈ C\R, b) [D,π(a)]− ∈ B(H), for every a ∈ A, where [x, y]− := xy− yx denotes the
commutator of x, y in B(H).

There are different possible types of morphisms between spectral triples [4]. Here we
choose the one used in [3], leading to the category Trip: given two objects (Aj ,Hj , Dj),
for j = 1, 2, a morphism is a pair

(ϕ,Φ) ∈ MorTrip[(A1,H1, D1), (A2,H2, D2)]
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also written as,

(A1,H1, D1)
(ϕ,Φ)7−→ (A2,H2, D2),

where ϕ : A1 → A2 is a ∗-morphism between the pre-C∗-algebras A1,A2, and Φ : H1 →
H2 is a bounded linear map in B(H1,H2) that intertwines the representations π1, π2 ◦ ϕ
and Dirac operators D1, D2:

ϕ2(ϕ(x)) ◦ Φ = Φ ◦ π1(x), (x ∈ A1),

D2 ◦ Φ = Φ ◦D1,

i.e., the following diagrams commute, for every x ∈ A1,

..

..H1 . ..H1

. ..⟲ .

..H1 . ..H1

.D1

. D2

.

Φ

.

Φ

..

..H1 . ..H1

. ..⟲ .

..H1 . ..H1

.π1(x) . π2 ◦ ϕ(x).

Φ

.

Φ

Let G be a discrete group. The (complex) group algebra C[G] of G is the set of complex
functions on G with finite support. Here we denote this algebra by AG. This is generated
by Dirac functions (measures)

δx(y) :=

{
1 y = x
0 y ̸= x

as x runs over G. The addition is defined pointwise, whereas the multiplication is given
by the convolution, defined by

(f ∗ g)(x) :=
∑
z∈G

f(z)g(z−1x),

for f, g ∈ AG. Also the involution is defined by

(f∗)(x) := f(x−1).

These make AG into a pre-C∗ algebra (with an appropriate norm coming from non
degenerate representations).

The assignment A, sending G to AG is indeed a functor [3].

Proposition 2.1 There exists a covariant functor A from the category Gr of groups with
homomorphisms, to the category Alg of associative complex unital involutive algebras
with unital involutive algebra homomorphisms, which to every group G associates the
group algebra AG.
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On the other hand, one could see AG as a vector space and equipped it with an inner
product

⟨f, g⟩ :=
∑
x∈G

f(x)g(x).

This is a pre-Hilbert space whose completion is ℓ2(G), here denoted by HG.
Next we recall some notions, used in Weyl dimension theory of groups.

Definition 2.2 Let G be a group and g1, · · · , gn ∈ G,

(1) g1, · · · , gn are independent, if for 0 < k ∈ N and 1 ⩽ α1, · · · , αk ⩽ n and
m1, · · · ,mk ∈ Z such that, αi ̸= αi+1, 1 ⩽ i < k, gm1

α1
gm2
α2

· · · gmk
αk

= 1 implies that
mi = 0, for all i.

(2) g1, · · · , gn are semi-independent, if for 0 < k ∈ N and 1 ⩽ α1, · · · , αk ⩽ n and
m1, · · · ,mk ∈ Z, gm1

α1
gm2
α2

· · · gmk
αk

= 1 implies that
∑

αi=j mi = 0, for all j.

An element g ∈ G is (semi-)independent if and only if it is of infinite order, ord(g) = ∞.
A weight ω on a group G is a real valued function on G, ω : G → R [7]. A length

function on G (with identity element e) is a weight ω satisfying the following conditions.

• ω(xy) ⩽ ω(x) + ω(y),

• ω(x−1) = ω(x),

• ω(x) = 0 ⇐⇒ x = e,

for all x, y ∈ G. We have the following definitions for kinds of weights on G:
Following [3], we say that a weight ω : G → R is a

(1) proper weight if for any k ∈ N, the set ω−1([−k, k]) is a finite set,
(2) Dirac weight if for any x ∈ G,

sup{|ω(y)− ω(x−1y)| : y ∈ G} < ∞,

(3) charged weight if |ω| is a length function on G.

Clearly a length function is always a Dirac weight.

Proposition 2.3 Let G be a group and N a normal subgroup of G, if ω : G → R be a
positive weight, then for the function ω̃ : G/N → R defined by

ω̃(xN) := inf{ω(xz)|z ∈ N},

we have,

(1) if ω be proper weight, then ω̃ is a proper weight,
(2) if ω be Dirac weight and N be a finite subgroup, then ω̃ is a Dirac weight,
(3) if ω be length function, then ω̃ is a length function.

Proof.

(1) Let ω be a proper weight and k > 0, if #ω̃−1[−k, k] = ∞, then for any coset
[x] ∈ ω̃−1[−k, k] we can find an element x0 ∈ ω̃−1[−k, k] such that, |ω(x0)| < 2k.
Since cosets are disjoint, we have #ω−1[−2k, 2k] = ∞, which contradicts the
properness of ω.

(2) Let N = {z1, · · · , zm} and x, y ∈ G, since ω is a Dirac weight, for any index i, j, k
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we have a bound named Mi,j,k such that

|ω(xzizjz−1
k zky)− ω(zky)| ⩽ Mi,j,k,

for any y ∈ G. Put M = max{Mi,j,k|i, j, k}, then

|ω̃([x][y])− ω̃([y])| ⩽ sup{|ω(xzizjz−1
k zky)− ω(zky)|}

⩽ max{Mi,j,k|i, j, k}

= M,

which is shown that ω̃ is a Dirac weight.
(3) For x, y ∈ G and z, w ∈ N ,

ω̃([x][y]) ⩽ ω(xzyw)

⩽ ω(xz) + ω(yw)

thus,

ω̃([x][y]) ⩽ inf{ω(xz)|z ∈ N}+ inf{ω(yw)|w ∈ N}

= ω̃([x]) + ω̃([y]).

■

As a concrete (and typical) example, if G = FX is the free group on a set of generators
X, then G has a length function. When moreover, X is countable set, G also has a proper
length function. Since every group G is a quotient of a free group, it follows that every
(discrete) group G has a length function, and every countably generated (discrete) group
G has a proper length function. Conversely, if a group G has a proper weight, then G
must be countable.

3. Category of weighted groups and spectral triples

For constructing a category for weighted groups one needs an appropriate notion of
morphism between weighted groups which respects the weight function. In [3] certain
morphisms between weighted groups are defined as follows.

Definition 3.1 [3] Let (G,ω) and (H,λ) be to weighted groups. A map ϕ : G → H is
called

(1) weighted if

ϕ#(λ) = λ ◦ ϕ = ω,

and co-weighted if there is a weighted homomorphism ρ : H → G such that
ϕ ◦ ρ = ιH ,

(2) isometric if

|λ ◦ ϕ| = |ω|,
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and sub-isometric if

|λ ◦ ϕ| ⩽ |ω|.

Here we introduce some other relevant classes of morphisms which are important for
geometric purposes.

Definition 3.2 Let (G,ω) and (H,λ) be to weighted groups. A map ϕ : G → H is called

• bounded if there exist a constant d ⩾ 0 such that for any x ∈ G,

ω(x)− d ⩽ λ(ϕ(x)) ⩽ ω(x) + d,

• semi-bounded if there exist constants d ⩾ 0 and a, b, c > 0, such that for any x ∈ G,

a.ω(x)− d ⩽ b.λ(ϕ(x)) ⩽ b.ω(x) + d,

• quasi-bounded map if there exist constants d ⩾ 0 and a, b, c, r, s, t > 0, such that for
any x ∈ G,

a.|ω(x)|r − d ⩽ b.|λ(ϕ(x))|s ⩽ c.|ω(x)|t + d.

Let us show that most of the properties of weights are stable under morphisms with
appropriate boundedness conditions.

Proposition 3.3 Let (G,ω) and (H,λ) be two groups and ϕ : G → H be a bounded
(semi-bounded or quasi-bounded) morphism.

(1) If λ be a Dirac weight, so is ω. Conversely, if ϕ is surjective and ω is a Dirac
weight, then so is λ.

(2) If ϕ has finite kernel and λ is a proper weight, so is ω. Conversely if ϕ is surjective
and ω is a proper weight, then so is λ.

Proof. Let ϕ is bounded, then there exist d ⩾ 0 such that, for any x ∈ G,

ω(x)− d ⩽ λ ◦ ϕ(x) ⩽ ω(x) + d.

If λ be a Dirac weight, then for any z ∈ H there exist a Mz ⩾ 0 such that, for any u ∈ H,

|λ(zu)− λ(u)| ⩽ Mz.

For x, y ∈ G,

±(ω(xy)− ω(y)) ⩽ ±(λ(ϕ(xy))− λ(ϕ(y))) + 2d

= ±(λ(ϕ(x)ϕ(y))− λ(ϕ(y))) + 2d

⩽ |λ(ϕ(x)ϕ(y))− λ(ϕ(y))|+ 2d

⩽ Mϕ(x) + 2d,

hence, ω is also Dirac.
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For the converse, let ϕ be an epimorphism and ω be a Dirac weight, then for any
x ∈ G, there exist Mx ⩾ 0 such that, for any y ∈ G,

|ω(xy)− ω(y)| ⩽ Mx.

For z, u ∈ H, choose x, y ∈ G with ϕ(x) = z and ϕ(y) = u. Then

±(λ(zu)− λ(u)) ⩽ ±(ω(xy)− ω(y)) + 2d

⩽ |ω(xy)− ω(y)|+ 2d

⩽ Mx + 2d,

hence, λ is also Dirac.
Next, if ω is proper, then for any k ⩾ 0 and z ∈ H such that |λ(z) ⩽ k, choose x ∈ G

with ϕ(x) = z. Then

λ(z) + d ⩽ ω(x) ⩽ λ(z) + d,

thus x ∈ ω−1([−k−d, k+d]). This gives an injective map from λ−1([−k, k]) to ω−1([−k−
d, k + d]), hence #λ−1([−k, k]) ⩽ #ω−1([−k − d, k + d]), thus λ is proper.

For the converse, let ϕ have a finite kernel and λ be proper, then as above,

#{x ∈ G|x ∈ ω−1([−k, k]) ⩽ #ker(ϕ)×#λ−1([−k − d, k + d]),

thus ω is a proper weight.
Similar proofs also work for the cases of semi-bounded or quasi-bounded morphisms.

■

On the other hand, properties such as properness or being Dirac does not pass from
one weight to another, when we apply morphisms with weak type of boundedness. We
illustrate this by an example. Let G = H = Z, and ϕ = IdG, if we choose λ(n) = |n| and

ω(n) =


n , if n ⩾ 0.

−n , if n = 2k + 1, K < 0.

n , if n = 2k, K < 0.

(1)

It is easy to see that |ω| = |λ| = λ, which show that the morphism is sub-bounded. But
ω(2k + 1) − ω(2k) = 4k + 1, where k < 0, so for x = 1, Mx = ∞, thus ω is not a Dirac
weight.

If ω, λ are two weight on a group G, then we say that they are boundedly (semi-
boundedly or quasi-boundedly) equivalent and write ω ∼

b
λ (ω ∼

sb
λ or ω ∼

qb
λ), if the

identity map is bounded (semi-bounded or quasi-bounded) on G.
Next let us remind how a spectral triple is defined on a weighted group [3, 7].

Proposition 3.4 [3] To every pair (G,ω) where G is a discrete countable group and ω
is a weight function on G, we associate a triple (AG,HG, Dω) as follows:

• AG is the group algebra of G,

• HG is the Hilbert space of G,

• the representation of the algebra AG on HG is the left-regular representation πG :
AG → B(HG),



214 M. Amini and Kh. Shamsolkotabi / J. Linear. Topological. Algebra. 06(03) (2017) 207-216.

• the Dirac operator Dω is the pointwise multiplication operator by the weight function
ωG, i.e.,

(Dωξ)(x) := ω(x)ξ(x), (x ∈ G),

defined on the domain {ξ ∈ HG|
∑

x∈G |ω(x)ξ(x)|2 < ∞}.

The triple (AG,HG, Dω) is a spectral triple if and only if the weight ω is proper and
Dirac.

In [3], the authors studied a category of spectral triples and showed that there is a
covariant functor from the category of (discrete) groups with length function to this
category. In this section we define a new contravariant functors between these categories.

Here we deal with four categories (and their variants). In the first category Gr, the
objects are discrete groups with Dirac proper weights and the morphisms are weighted
group homomorphisms with some additional properties. The second and third categories
Alg and Hil consists of unital ∗-algebras with unital ∗-homorphisms, and Hilbert spaces
with linear isometries, in each case with some additional properties on morphisms. The
fourth category Trip is the category of spectral triples as described in [3].

The next result is proved in [3, Theorem 3.18].

Theorem 3.5 There exists a covariant functor T, from the category Gr of proper Dirac-
weighted countable groups with weighted monomorphisms to the category of spectral
triples, associating to every (G,ω) the canonical triple (AG,HG, Dω).

Note that for a monomorphism ϕ : (G,ω) → (H,λ), one can define Aϕ : AG → AH

and Hϕ : HG → HH by extending ϕ on the span of the set {δx|x ∈ G}, and then to the
algebra or Hilbert space it generates.

Here we first define a contravariant functor between categories Gr and Alg.

Proposition 3.6 There exist a contravariant functor F from the category Gr to the
category Alg which associates to every group G its group algebra AG and to every finite
kernel epimorphism ϕ : G → H the morphism F(ϕ) : AH → AG defined by

F(ϕ)(f) =
1

N
f ◦ ϕ, (f ∈ AH),

where N is the cardinal of ker(ϕ).

Proof. The condition on the kernel of ϕ guarantees that F(ϕ) takes functions of finite
support on H to functions of finite support on G. We only need to check that F(ϕ) is
an algebra homomorphism. For f, g ∈ AH and x ∈ G, we have

[F(ϕ)(f) ∗ F(ϕ)(g)](x) =
1

N2
[(f ◦ ϕ) ∗ (g ◦ ϕ)](x)

=
1

N2
[N.

∑
y∈Im(ϕ)

f(y)g(y−1ϕ(x))]

=
1

N

∑
y∈H

f(y)g(y−1ϕ(x))

= F(ϕ)(f ∗ g)(x).
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■

This functor is a base for our contravariant functor to the category of spectral triples,
introduced later. The following counterexample shows that we need the condition that
the kernel is finite. We use the abbreviation ϕ# := F(ϕ).

Example 3.7 Let G = Z× Z and H = Z and define ϕ : G → H; ϕ(m,n) = m. This is
a homomorphisms, but we have

ϕ#(δ0) = δ0 ◦ ϕ =

+∞∑
n=−∞

δn,

which is not a finite support function.

Next we define another functor between categories Gr and Hil.

Proposition 3.8 There is a contravariant functor F from the category Gr of groups
with finite kernel epimorphism to the category Hil of Hilbert spaces with linear isome-
tries, which associates to each group G the Hilbert space ℓ2(G) and to a finite kernel
epimorphism ϕ : G → H the map

F(ϕ) : g 7→ 1√
N

g ◦ ϕ (g ∈ ℓ2(H)),

where N = #ker(ϕ). This functor is exact.

Proof. For the first statement, observe that if ξ, η ∈ ℓ2(H),

⟨F(ϕ)(ξ),F(ϕ)(η)⟩ = 1

N

∑
x∈G

ξ ◦ ϕ(x)η ◦ ϕ(x)

=
1

N

∑
ϕ(x)=y∈Im(ϕ)

N.ξ(y)η(y)

= ⟨ξ, η⟩.

For exactness, one just needs to recall that every exact sequence in the first category is
of the form

0 → G → G → 0 → 0.

■

Finally we can define a contravariant functor between categories Gr and Trip.

Proposition 3.9 There exist a contravariant functor H from the subcategory of Gr,
consisting of proper Dirac weighted groups with weighted finite kernel homomorphisms
to the category Trip of spectral triples, which associates (C[G], ℓ2(G), Dω) to (G,ω),
where Dω is the corresponding Dirac operator.

Proof. We need to show that for weighted groups (G,ω) and (H,λ) and a weighted
finite kernel homomorphism ϕ : G → H, the corresponding diagram commutes. This
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follows if one observes that for a basic element δy in ℓ2(H), we have

Dω ◦ H(ϕ)(δy) = Dω(
1√
N

∑
ϕ(x)=y

δx)

=
1√
N

∑
ϕ(x)=y

Dω(δx)

=
1√
N

∑
ϕ(x)=y

ω(x)δx

= λ(y)
1√
N

∑
ϕ(x)=y

δx

= H(ϕ)(λ(y)δy)

= H(ϕ) ◦Dλ(δy).

■
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