Error estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space
Subject Areas : History and biography
1 - Department of Mathematics, Hamedan Branch,
Islamic Azad University, Hamedan, Iran
2 - Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Keywords:
Abstract :
[1] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A, 272 (1220) (1972), 47-78.
[2] A. Bouziani, Solvability of nonlinear pseudoparabolic equation with a nonlocal boundary condition. Analysis 55 (2003), 883-904.
[3] A. Bouziani, Initial-boundary value problems for a class of pseudoparabolic equations with integral boundary conditions. J. Math. Anal. Appl. 291 (2004), 371-386.
[4] P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19 (1968), 614-627.
[5] M. G. Cui, Y. Z. Lin, Nonlinear numerical analysis in the reproducing kernel space. Nova 2009.
[6] D. Q. Dai, H. Yu, Nonlocal boundary problems for a third-order one-dimensional nonlinear pseudoparabolic equation. SIAM J. Nonlinear Anal. 66 (2007), 179-191.
[7] G. V. Demidenko, S. V. Uspenskii, Equations and Systems that are not Solved with Respect to the Highest Derivative. Nauchnaya Kniga, Novosibirsk, 1998, 437-443.
[8] I. E. Egorov, S. G. Pyatkov and S. V. Popov, Nonclassical Operator Dierential Equations. Nauka, Novosibirsk, 2000, 336-342.
[9] A. Favini, A. Yagi, Degenerate Dierential Equations in Banach Spaces. vol. 215, Marcel Dekker, New York, 1999, 313-335.
[10] H. Gajewski, K. Grger, K. Zacharias, Nichtlineare Operatorgleichungen und Operator differential gleichungen. Akademie, Berlin, 1974, 281-293.
[11] E. I. Kaikina, Nonlinear pseudoparabolic type equations on a half-line with large initial data. Nonlinear Anal. 67 (2007), 2839-2858.
[12] A. I. Kozhanov, A.I, An initial-boundary value problem for equations of the generalized Boussinesq equation type with a nonlinear source. Mat. Zametki 65 (1) (1999), 70-75.
[13] Y. Z. Lin, Y. F. Zhou, Solving nonlinear pseudoparabolic equations with nonlocal boundary cnditions in reproducing kernel space. Numer Algor, 52 (2009), 173-189.
[14] X. Y. Li, B. Y. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems. App. Math, 243 (2013), 10-15.
[15] S. Mesloub, A nonlinear nonlocal mixed problem for a second order pseudoparabolic equation. J. Math. Anal. Appl. 316 (2006), 189-209 .
[16] V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans. Am. Math. Soc. 356 (7) (2004), 2739-2756.
[17] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Amer. Math. Soc., Providence 49 (1997), 278-282.
[18] G. A. Sviridyuk, V. E. Fdorov, Analytic semigroups with kernels, and linear equations of Sobolev type. Sib. Mat. Z. 36 (5) (1995),1130-1145.