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Abstract. In this paper, we discuss about nonlinear pseudoparabolic equations with nonlocal
boundary conditions. An effective error estimation for this method has not yet been discussed.
The aim of this paper is to fill this gap.

c⃝ 2016 IAUCTB. All rights reserved.

Keywords: Reproducing kernel method, error estimation, nonlinear pseudoparabolic
equation.

1. Introduction

The nonlinear problems are very important. All kinds of boundary value conditions
arise in the problems which make them more difficult to be solved. Nonlocal boundary
conditions arise naturally in various engineering models and physical phenomena. Pseu-
doparabolic equation with nonlocal boundary conditions is one of the nonlinear problems.
The precise statement of the problem is given as follows:
Let T > 0 and

D =
{
(x, t) ∈ R2 : α < x < β, 0 < t < T

}
.
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Determine a function u : D −→ R such that



∂u
∂t −

∂
∂x

(
a(x, t)∂u∂x

)
− η ∂2

∂t

(
a(x, t)∂u∂x

)
= f

(
x, t, u, ∂u∂

)
u(x, 0) = u0(x)

u(α, t) = µ(t)∫ β
α u(x, t)dx = E(t).

(1)

We shall assume:

H1. 0 < C0 ⩽ a ⩽ C1, C2 ⩽
∂a

∂t
⩽ C3, |∂a

∂t
| ⩽ C4,For all(x, t) ∈ D.

H2. There exists a positive constant L such that

|f(x, t, p1, p2)− f(x, t, q1, q2)| ⩽ L(|p1 − p2|+ |q1 − q2|), (x, t) ∈ D.

For simplicity, we always take α = 0, β = 1. Equations (1) are the conditions for
determining solution of this, that is, the solution of (1). If we could construct a function
space, in which each function satisfies (1), then we can solve (1) in the function space.
In order to construct such a function space, we need homogenize the conditions. Put

ũ(x, 0) = u0(x)− U(x, 0)− u0(x) + U0(x),

where

U(x, t) = (1− 3x2 + 2x)E(t) + (1− 2x)(µ(t)− E(t)), U0(x) = U(x, 0).

Then we can obtain


∂ũ
∂t −

∂
∂x

(
a(x, t)

∂ũ

∂x

)
− η ∂2

∂t∂x

(
a(x, t)

∂ũ

∂x

)
= g(x, t) + f̃

(
x, t, ũ,

∂ũ

∂x

)
,

ũ(x, 0) = 0,

ũ(α, t) = 0,∫ β
α ũ(x, t) dx = 0.

(2)

Following we will always replace ũ and f̃ with u and f in 1, respectively.
In [2], the existence and uniqueness of the solution for problem (1) are proved. In [13],

It has been proved a very simple numerical algorithm for the approximations of problem
(1) based on the reproducing kernel space.
The rest of the paper is organized as follows. In the next section, the reproducing kernel
method for solving(1) is recalled. The error estimation is presented in Section 3. Nu-
merical examples are provided in Section 4. Finally, the concussion of the paper will be
dramn in Section 5.
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2. Reproducing kernel method

In this section, we discuss about reproducing kernel space and solving nonlinear pseu-
doparabolic equations with nonlocal boundary conditions in reproducing kernel space.
To solve (1), first we construct several reproducing kernel spaces.

Definition 2.1 The function space W 3[0, 1] is defined by

W 3[0, 1] =
{
u| u′′ is absolutly continuous on [0, 1], u′′′ ∈ L2[0, 1], u(0) =

∫ 1

0
u(x)dx = 0

}
.

Inner product and norm of W 3[0, 1] are respectively defined by

< u, v >W 3=

2∑
i=0

u(i)(0)v(i)(0) +

∫ 1

0
u

′′′
(x)v

′′′
(x)dx,

∥ u ∥W 3=
√
< u, u >W 3 , u, v ∈W 3[0, 1],

W 3[0, 1] is a reproducing kernel space and it’s reproducing kernel Ry(x) can be obtained
by

Ry(x) =

{
a1 + a2x

+a3x
2 + · · ·+ a6x

5 + cx6

6! ,

b1 + b2x
+b3x

2 + · · ·+ b6x
5 + cx6

6! .
(3)

We can obtain the coefficients ai, bi by using mathematica. For more details refer [13].

Definition 2.2 The function space W 2[0, T ] is defined by

W 2[0, T ] =

{
u(x)|u′(x)is absolutly continuous in [0, T ],

u′′(x) ∈ L2[0, T ], u(0) = 0

}
.

The inner product and norm of W 2[0, T ] are respectively defined by

< u, v >W 2=

1∑
i=0

u(i)(0)v(i)(0) +

∫ T

0
u′′(t)v′′(t)dt,

∥ u ∥W 2=
√
< u, u >W 2 .
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Definition 2.3 Let D = [0, 1]×[0, T ], then the reproducing kernel spaceW (D) is defined
by

W (D) =

{
u(x, t)| ∂

3u

∂x2t
is completely continuous in D,

∂5u

∂x3t2
∈ L2(D), u(0, t) =

∫ 1

0
udx = 0

}
.

The inner product and norm of W (D) is defined by

< u(x, t), v(x, t) >W=

2∑
i=0

∫ T

0

[
∂2

∂t2
∂i

∂xi
u(0, t)

∂2

∂t2
∂i

∂xi
v(0, t)

]
dt

+

1∑
j=0

⟨ ∂
j

∂tj
u(x, 0),

∂j

∂tj
v(x, 0)⟩W

+

∫ ∫
D

∂3

∂x3
∂2

∂t2
u(x, t)

∂3

∂x3
∂2

∂t2
v(x, t)dxdt,

and

∥ u ∥W=
√
< u, u >W .

In Equation (1), put

(Lu)(x, t) =
∂u

∂t
− ∂

∂x

(
a(x, t)

∂u

∂x

)
− η

∂2

∂t∂x

(
a(x, t)

∂u

∂x

)
.

It is clear that L : W (D) −→ L2(D) is a bounded linear operator. Put φi(x, t) =
R(y,s)(x, t) and ψi(x, t) = L∗φi(x, t), where R(y,s)(x, t) is the reproducing kernel ofW (D),

L∗ is the adjoint operator of L. The orthonormal system {ψ̃i(x, t)}∞i=1 of W (D) can be
derived using Gram-Schmidt orthogonalization process of {ψi(x, t)}∞i=1 as follows,

ψ̃i(x, t) =

i∑
k=1

βikψk(x, t), (4)

where βik are orthogonal coefficients.
According to [13], we have the following theorems and lemmas:

Lemma 2.4 ψi(x, t) ∈W (D).

Lemma 2.5 The function system {ψi(x, t)}∞i=1 is a complete system in W (D).

Theorem 2.6 If u(x, t) is the solution of (1), then

u(x, t) =

∞∑
i=1

i∑
k=1

βik|g(xk, tk) + αk|ψ̃i(x, t),
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where

αk = f(xk, tk, u(xk, tk), ∂xu(xk, tk)|x=xk
), k = 1, 2, . . . ,

and

un(x, t) =

n∑
i=1

i∑
k=1

βik|g(xk, tk) + αk|ψ̃i(x, t). (5)

Lemma 2.7 If u(x, t) ∈W (D), then there exists a constant c such that

|u(x, t)| ⩽ c ∥ u(x, t) ∥m, |u(k)(x, t)| ⩽ c ∥ u(x, t) ∥m, 1 ⩽ k ⩽ m− 1

.

Theorem 2.8 The approximate solution uN (x, t) and it’s derivatives ∂i+j
xt uN (x, t) ,

i = 0, 1, 2 , j = 0, 1 uniformly converge to exact solution u(x, t) and it’s derivatives

∂i+j
xt u(x, t) , i = 0, 1, 2 , j = 0, 1 respectively.

3. Error estimation

In this section, we give the error estimation for nonlinear pseudoparabolic equations with
nonlocal boundary conditions in reproducing kernel.

Theorem 3.1 Let uN (x, t) be the approximate solution of (1) in spaceW (D) and u(x, t)
be the exact solution of (1). If 0 = x1 < x2 < · · · < xN = 1, and 0 = t1 < t2 < · · · <
tM = T , and if a(x, t), f(x, t) ∈ c2[0, 1], then

∥ u(x, t)− uN (x, t) ∥⩽ d1h, ∥ u(k)(x, t)− u
(k)
N (x, t) ∥⩽ d1h, 1 ⩽ k ⩽ 2.

Proof. Note here that

LuN (x, t) =

N∑
i=1

AiLψ̃i(x, t),

and

(LuN )(xn, tn) =

N∑
i=1

Ai(Lψ̃i(x, t), φn(x, t))

=

N∑
i=1

Ai(ψ̃i(x, t), L
∗φn(x, t))

=

N∑
i=1

Ai(ψ̃i(x, t), ψn(x, t)).
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Therefore,

n∑
j=1

βnj(LuN )(xj , tj) =

N∑
i=1

Ai(ψ̃i(x, t),

n∑
j=1

βnjψj(x, t))

=

N∑
i=1

Ai(ψ̃i(x, t), ψ̃n(x, t))

= An.

By induction, we have

LuN (xj , tj) = f(xj , tj), j = 1, 2, · · · , N,

By replacement

RN (x, t) = f(x, t)− LuN (x, t),

Obviously, RN (x, t) = 0, j = 1, 2, · · · , N for 0 = x1 < x2 < · · · < xN = 1, and
0 = t1 < · · · < tM = T . Suppose that l(x, t) is a polynomial of degree 1 that interpolates
the function RN (x, t). It is clear that l(x, t) = 0. Also, for t ∈ [ti, ti+1] and ∀x ∈ [xi, xi+1]
we have

RN (x, t) = RN (x, t)− l(x, t) =
∂4xtRN (ξi, ηi)

2!
(x− xi)(x− xi+1)(t− ti)(t− ti+1), (6)

Hence, for ξi ∈ [xi, xi+1]× [t+ i, ti+1],

|RN (x, t)| ⩽ |∂4xtRN (ξi, ηi)|
32

h4 = cih
4
i , ci =

|∂4xtRN (ξi, ηi)|
32

, hi = |xi+1−xi|×|ti+1−ti|.

Putting c = max1⩽i⩽N−1ci and h = max1⩽i⩽N−1hi, we have

∥ RN (x, t) ∥∞= max
x∈[0,1],t∈[0,T ]

|RN (x, t)| ⩽ ch4.

We have,

∥ RN (x, t) ∥1=
√

⟨RN (x, t), RN (x, t)⟩ = ⟨RN (x, t), RN (x, t)⟩
1

2



B. Zamanifar et al. / J. Linear. Topological. Algebra. 05(03) (2016) 205-214. 211

=

[ 2∑
i=0

∫ T

0

[
∂2

∂t2
∂i

∂xi
RN (0, t)

∂2

∂t2
∂i

∂xi
RN (0, t)

]
dt

+

1∑
j=0

⟨ ∂
j

∂tj
RN (x, 0),

∂j

∂tj
RN (x, 0)⟩W1

+

∫ ∫
D

∂3

∂x3
∂2

∂t2
RN (x, t)

∂3

∂x3
∂2

∂t2
RN (x, t)dxdt

] 1

2

=

[ 2∑
i=0

∫ T

0

[ ∂2
∂t2

∂i

∂xi
RN (0, t)

]2
dt

+ ∥ ∂
j

∂tj
RN (x, 0)∥2

+

∫ 1

0

∫ T

0

[ ∂3
∂x3

∂2

∂t2
RN (x, t)

]2
dxdt

] 1

2

Obviously,

2∑
i=0

∫ T

0

[
∂2

∂t2
∂i

∂xi
RN (0, t)

]2
dt ⩽ c2h8, (7)

∥ ∂
j

∂tj
RN (x, 0)∥2 ⩽ ch4, (8)

and ∫ 1

0

∫ T

0

[ ∂3
∂x3

∂2

∂t2
RN (x, t)

]2
dxdt =

N−1∑
i=1

M−1∑
j=1

∫ xi+1

xi

∫ ti+1

ti

[ ∂3
∂x3

∂2

∂t2
RN (x, t)

]2
dxdt

⩽ c̃h2
N−1∑
i=1

M−1∑
j=1

∫ xi+1

xi

∫ ti+1

ti

dxdt

⩽ c̃c̄h2 ⩽ cch2, (9)

where cc is constant. In view of (7), (8) and (9), there axists a constant C such that

∥RN (x, t)∥1 =
[ 2∑

i=0

∫ T

0

[ ∂2
∂t2

∂i

∂xi
RN (0, t)

]2
dt

+ ∥ ∂
j

∂tj
RN (x, 0)∥2

+

∫ 1

0

∫ T

0

[ ∂3
∂x3

∂2

∂t2
RN (x, t)

]2
dxdt

] 1

2

⩽ Ch,
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Noting that

u(x, t)− uN (x, t) = L−1RN (x, t),

there exists a constant d1 such that

∥u(x, t)− uN (x, t)∥3 = ∥L−1RN (x, t)∥3 ⩽∥ L−1 ∥∥ RN (x, t) ∥1⩽ d1h,

According to Lemma (2.7), it is easy to see that

∥u(x, t)− uN (x, t)∥∞ ⩽ d1h, ∥u(k)(x, t)− u
(k)
N (x, t)∥∞ ⩽ d1h.

■

4. Numerical example

Example We consider the following problem

∂u
∂t −

∂2u
∂x − ∂2u

∂x2∂t = f
(
x, t, u, ∂u∂x

)
, 0 ⩽ x ⩽ 1, 0 ⩽ t ⩽ 1,

u(x, 0) = u0(x), 0 ⩽ x ⩽ 1,

u(α, t) = µ(t), 0 ⩽ t ⩽ 1,∫ β
α u(x, t)dx = E(t), 0 ⩽ t ⩽ 1,

(10)

where µ(t) = 4 + cos 2t, E(t) = 4 + cos 2t + 8et sin2 0.5, u0(x) = 5 + 4 sinx,
f(x, t, p, q) = −2 sin 2t + 12et sinx − sin p − cos q. The true solution is
u(x, t) = cos 2t + 4(et sinx + 1). By using Mathematica 5.0 and the presented
method in this paper, we calculate the approximate solution uN (x, t). Table 1 gives the
true solution, approximate solution and their relative errors.
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Table 1. The numerical result of example

(x, t) u(x, t) un(x, t) Relative error

( 1
10

, 1
10

) 5.4214 5.42426 0.000527649

( 9
10

, 1
5
) 5.72739 5.72966 0.000396222

( 7
10

, 2
5
) 7.30674 7.30919 0.000335972

( 1
2
, 3

5
) 8.26405 8.26508 0.000124337

( 3
10

, 4
5
) 8.69865 8.6942 0.000512001

( 1
10

, 1) 8.69994 8.68389 0.00184534

(1, 1
10

) 4.66935 4.67176 0.00051487

( 4
5
, 3

10
) 6.60157 6.60397 0.000363313

( 3
5
, 1

2
) 7.85664 7.85874 0.000267896

( 2
5
, 7

10
) 8.54095 8.53987 0.000125427

( 1
5
, 9

10
) 8.74809 8.73873 0.00106994

(1, 1) 12.7333 12.7289 0.000345507

5. Conclusion

In this paper, we discussed about nonlinear pseudoparabolic equatins with nonlocal
boundary conditions. An effective error estimation for this method has not yet been dis-
cussed. In this paper, we give the error estimation for nonlinear pseudoparabolic equatins
with nonlocal boundary conditions in reproducing kernel space.
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