Construction of strict Lyapunov function for nonlinear parameterised perturbed systems
Subject Areas : History and biography
1 - Faculty of science, University of Sfax, Sfax, Tunisia
2 - Faculty of science, University of Sfax, Sfax, Tunisia
Keywords:
Abstract :
[1] A. Benabdallah, M. Dlala and M. A. Hammami, A new Lyapunov function for stability of time-varying nonlinear perturbed systems. Systems and Control Letters, 56 (2007) 179-187.
[2] F. Camilli, L. Grne, F. Wirth, Zubovs method for perturbed differential equations, in: Proceedings of the Mathematical Theory of Networks and Systems, Perpignan, 2000, CD-ROM, article B100.
[3] F. Camilli, L. Grne, F. Wirth, A generalization of Zubovs method to perturbed systems. SIAM J. Control Optim. 40 (2001) 496-515.
[4] S. Dubljevic, N. Kazantzis, A new Lyapunov design approach for nonlinear systems based on Zubovs method. Automatica 38 (2002), 1999-2007.
[5] W. Hahn, Stability of Motion. Springer, Berlin, Heidelberg, 1967.
[6] M. A. Hammami, On the stability of nonlinear control systems with uncertainty. J. Dynamical Control Systems 7 (2) (2001), 171-179.
[7] H. K. Khalil, Nonlinear Systems. third ed., Prentice-Hall, Englewood Clifs, NJ, 2002.
[8] V. Lakshmikantham, S. Leela an A.A. Matynuk, Practical stability of nonlinear systems. World scientific Publishing Co. Pte. Ltd. 1990.
[9] Y. Lin, E. Sontag, Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1) (1996), 124-160.
[10] A. A. Martynuk, Stability in the models of real world phenomena. Nonlinear Dyn. Sys. Theory 11 (1) (2011), 7-52.
[11] F. Mazenc. Strict Lyapunov Fonctions for Time-varying Systems. Automatica 39 (2003), 349-353.
[12] D. R. Merkin, Introduction to the Theory of Stability. Springer, New York, Berlin, Heidelberg, 1996.
[13] E. Panteley, A. Loria, Global uniform asymptotic stability of cascaded nonautonomous nonlinear systems, in: Proceedings of the Fourth European Control Conference, Louvain-La-Neuve, Belgium, Julis, paper no. 259, 1996.
[14] E. Panteley, A. Loria, Growth rate conditions for uniform asymptotic stability of cascaded time-varying systems. Automatica 37 (2001) 453-460.
[15] V. N. Phat, Global stabilization for linear continuous time-varing systems. Applied Mathematics and Computation 175 (2006), 1730-1743.
[16] N. Rouche, P. Habets, M. Laloy, Stability theory by Lyapunovs direct method. Appl. Math. Sci. 22 (1977).
[17] R. Sepulchre, M. Jankovic, P.V. Kokotovic, Constructive Lyapunov stabilization of nonlinear cascade systems. IEEE Trans. Automat. Control 41 (12) (1996), 1723-1735.