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parameterised perturbed systems

B. Ghanmia∗, M. A. Hammamia

aFaculty of science, University of Sfax, Sfax, Tunisia.

Received 14 February 2016; Revised 8 August 2016; Accepted 20 August 2016.

Abstract. In this paper, global uniform exponential stability of perturbed dynamical systems
is studied by using Lyapunov techniques. The system presents a perturbation term which is
bounded by an integrable function with the assumption that the nominal system is globally
uniformly exponentially stable. Some examples in dimensional two are given to illustrate the
applicability of the main results.
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1. Introduction

Any mathematical model adequately describing the reality in terms of differential equa-
tions involves (explicitly or implicitly) some parameters whose values are in the typical
situation known only approximately, with a given accuracy. That is why the question of
the characteristics of the solutions of differential equation under a small change of pa-
rameters involved in the equation is of principle interest. Since the classical works of H.
Poincare and A.M. Lyapunov, the so-called regular case, has been investigated in details.
The concept of stability and boundedness of solutions of parameterised systems cannot
be overemphasized in the theory and applications of differential equations.

The second Lyapunov method have long played an important role in the history of
stability theory, and it will no doubt continue to serve as an indispensable tool in future
research papers. The strength of this methods is that knowledge of the exact solution is
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not necessary and the qualitative behavior of the solution to the system can be inves-
tigated without computing the actual solution. This method establishes the stability or
instability of the origin by requiring the existence of a Lyapunov function that satisfies
certain conditions and so many theorems establishing different kind of stability have been
proven.(see[1],[2],...,[17] ).

Although for a nonlinear time varying parameterised system, the construction of a
Lyapunov function is an intractable problem, the usefulness of the ”second method” of
Lyapunov is reflected in the study of stability of parameterised perturbed systems. For
such systems, the use of the second Lyapunov method is based on the converse theorems
that provide, under certain conditions, that if the nominal system is stable, then there
exists a Lyapunov function, which can be considred as a Lyapunov function candidate
for the perturbed system.

By adopting the idea introduced by [17] to the study of the stability of autonomous
cascades systems, another way is open by the new approach given in [11]. In this pa-
per, a new construction of a Lyapunov function for the study of asymptotic stability of
parameterised perturbed systems is investigated. The purpose of this paper is to etab-
lish sufficient conditions for the exponential stability of a class of nonlinear time-varying
parameterised systems. In the spirit of the idea of [1], [17], we study the exponential
stability and we give some examples to illustrate our results.

2. Preliminaries

Consider the perturbed parameterised nonlinear time-varying systems of the form:

ẋ = f(t, x, θ) + g(t, x, θ) (1)

where x ∈ Rn, t ∈ R+ and θ ∈ Rm is a constant free parameter and f, g : R+ × Rn ×
Rm −→ Rn are locally Lipschitz in state and piecewise continuous in time such that

f(t, 0, θ) = g(t, 0, θ) = 0, ∀ t ⩾ 0, ∀ θ ∈ Rm.

Lyapunov analysis can be used to shows boundedness of the solution of the state
equation, even when there is no equilibrium point at the origin. In our case when the
perturbation term is uniformly bounded and g(t, x, θ) ̸= 0, for some t ⩾ 0 and θ ∈ Rm

for perturbed system of the form (1). The asymptotic stability is more important than
stability, also the desired system may be unstable and yet the system may oscillate
sufficiently near this state that its performance is accepted, thus the notion of practical
stability can be more suitable in several situations than Lyapunov stability (see [8], [10]).
Suppose that the nominal system

ẋ = f(t, x, θ) (2)

has a globally uniformly exponentially stable (G.U.E.S) equilibrium point at the ori-
gin with Wθ(t, x) as an associate Lyapunov function, then calculating the derivative of
Wθ(t, x) along the trajectories of the perturbed system (1) one can reach the conclusion
about the definiteness of Ẇθ(t, x) by imposing some restrictions on the perturbation term
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g(t, x, θ). Our approach is to analysis the stability of some classes of perturbed systems
which can be shown to be G.U.E.S by using a Lyapunov function of the form

Vθ(t, x) = Wθ(t, x) + Ψθ(t, x),

where the function Ψθ(t, x) is given by:

Ψθ(t, x) =

∫ +∞

t

∂Wθ

∂x
(s, ϕθ(s, t, x)).g(s, ϕθ(s, t, x), θ)ds, (3)

with ϕθ(s, t, x) is the solution of the parameterised perturbed system (1) such that
ϕθ(t, t, x) = x. Note that the function Ψθ(t, x) is chosen in such a way that the function
Vθ(t, x) is positive definite, and its derivative along the trajectories of (1) is negative
definite. Naturally, the choice of Ψθ(t, x) depends on the perturbation term g(t, x, θ) and
its smoothness is given under some restrictions on the dynamics of the system.
The strict Lyapunov function decay condition V̇θ(t, x) < 0, for all x ̸= 0, all t ⩾ 0 and all

θ ∈ Rm, means that
dVθ

dt
(t, ϕθ(t, t0, x0)) < 0, for all t ⩾ t0 ⩾ 0 as long as the trajectory

ϕθ(t, t0, x0) is not at zero. The decay condition is equivalent to the existence of a positive
definite function α(.) such that

V̇θ(t, x) ⩽ −α(∥x∥), ∀x ∈ Rn, ∀ t ⩾ 0, ∀ θ ∈ Rm.

3. Definitions and notations

3.1 Notations

In this paper the solution of the system (2) ( resp (1)), with initial condition (t0, x0) ∈
R+ × Rn is denoted by xθ(., t0, x0) ( resp ϕθ(., t0, x0) ). If r > 0, we denote the closed
ball of Rn of radius r by

Br = {x ∈ Rn; ∥x∥ ⩽ r}.

If ρ : R −→ C is a measurable function, we denote by ∥ρ∥p =
[ ∫

R
|ρ(s)|pds

] 1

p

and the

Lebesgue space

Lp =
{
ρ : ∥ρ∥p < +∞

}
.

3.2 Definitions

Definition 3.1 A solution of (2) is said to be

(1) Uniformly bounded (U.B) if there exists a positive constant c independent of
t0 ⩾ 0 and for every a ∈]0, c[, there is β = β(a) > 0, independent of t0, such that:

∥x0∥ ⩽ a =⇒ ∥xθ(t, t0, x0)∥ ⩽ β, ∀ t ⩾ t0 ⩾ 0, θ ∈ Rm. (4)

(2) Globally uniformly bounded (G.U.B) if (4) holds for all a > 0.
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Definition 3.2 A continuous function α : [0, a) −→ [0,∞) is said to belong to class K
if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if a = ∞ and
α(r) −→ ∞ as r −→ ∞.

Definition 3.3 A continuous function β : [0, a[×[0,∞[−→ [0,∞[ is said to belong to
class KL if; for each fixed s, the mapping β(r, s) belongs to class K with respect to r and,
for each fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) −→ 0 as
s −→ +∞.

Definition 3.4 The equilibrium point x = 0 of (2) is globally uniformly asymptotically
stable (G.U.A.S ) if there exist a KL function β(., .) such that

∥xθ(t, t0, x0)∥ ⩽ β(∥x0∥, t− to) ; ∀ t ⩾ t0, ⩾ 0∀x0 ∈ Rn. (5)

Definition 3.5 The equilibrium point x = 0 of (2) is globally uniformly exponentially
stable ( G.U.E.S) if (5) is satisfies with β(r, s) = kre−λs; k, r, λ > 0.

4. Mains results

Let x = 0 be an equilibrium point for the nonlinear nominal system (2) where the
jacobian matrix [∂f/∂x] is bounded on Rn, uniformly in t. Let K,λ > 0, and assume
that the trajectories of the nominal system satisfy:

∥xθ(t, t0, x0)∥ ⩽ K∥x0∥ exp(−λ(t− t0)), ∀x0 ∈ Rn, ∀t ⩾ t0 ⩾ 0, ∀ θ ∈ Rm.

Then, by a classical Theorem in [7], there is a continuously differentiable Lyapunov
function

Wθ : [0,+∞[×Rn −→ R+,

that satisfies the assumption (H1), which will be indicated in the rest. Let us consider
the followings assumptions.

(H1) The Lyapunov function Wθ satisfies:
i) ∃ c1, c2 > 0 : c1∥x∥2 ⩽ Wθ(t, x) ⩽ c2∥x∥2, ∀ (t, x) ∈ [0,+∞[×Rn, θ ∈ Rm,

ii) ∃ c3 > 0 : Ẇθ(t, x) =
∂Wθ

∂t
(t, x) +

∂Wθ

∂x
(t, x).f(t, x, θ) ⩽ −c3∥x∥2,

for all (t, x) ∈ [0,+∞[×Rn and θ ∈ Rm,

iii) ∃ c4 > 0; ∥∂Wθ

∂x
(t, x)∥ ⩽ c4∥x∥, ∀(t, x) ∈ [0,+∞[×Rn, θ ∈ Rm.

(H2) There exists a continuous function ρ : [0,+∞[−→ [0,+∞[, such that

∥g(t, x, θ)∥ ⩽ ρ(t)∥x∥, ∀ t ⩾ 0, ∀x ∈ Rn, ∀ θ ∈ Rm.

The following result gives a sufficient condition, in terms of a Lyapunov function, for the
dynamical parameterised system to be globally uniformly exponentially stable.

Proposition 4.1 If ρ ∈ Lp, p ⩾ 1, then under assumptions (H1) and (H2), the equi-
librium point x = 0 of the perturbed system (1) is globally uniformly exponentially
stable.
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Proof. Let (t0, x0) ∈ [0,+∞[×Rn\{0} an initial condition. In this proof we will discuss
two cases

Case 1: p = 1 We have

d

dt
(Wθ(t, ϕ(t, t0, x0))) = Ẇθ(t, ϕθ(t, t0, x0)) +

dWθ

dx
(t, ϕθ(t, t0, x0)).g(t, ϕθ(t, t0, x0), θ)

⩽ −c3∥ϕθ(t, t0, x0)∥2 +
dWθ

dx
(t, ϕθ(t, t0, x0)).g(t, ϕθ(t, t0, x0), θ)

⩽ −c3∥ϕ(t, t0, x0)∥2 + c4ρ(t)∥ϕ(t, t0, x0)∥2,

⩽ −c3
c2
Wθ(t, ϕθ(t, t0, x0)) +

c4
c1
ρ(t)Wθ(t, ϕθ(t, t0, x0)).

It follows that,

d
dt(Wθ(t, ϕθ(t, t0, x0)))

Wθ(t, ϕθ(t, t0, x0))
⩽ −c3

c2
+

c4
c1
ρ(t),

by integration between t and t0, we obtain the inequality, for all t ⩾ t0 ⩾ 0

∥ϕθ(t, t0, x0)∥ ⩽
√

c2
c1

e
c4
2c1

∥ρ∥1∥x0∥e−
c3
2c2

(t−t0), ∀ θ ∈ Rm.

Case 2: p > 1 Let q > 1 such that 1
p + 1

q = 1, by assumption (H1) we have,

d

dt
(Wθ(t, ϕθ(t, t0, x0))) ⩽ −c3∥ϕθ(t, t0, x0)∥2 +

dWθ

dx
(t, ϕθ(t, t0, x0)).g(t, ϕ(t, t0, x0), θ)

⩽ −c3∥ϕθ(t, t0, x0)∥2 + c4ρ(t)∥ϕθ(t, t0, x0)∥2,

⩽ −c3∥ϕθ(t, t0, x0)∥2 + c4

[ρ(t)
ε

∥ϕθ(t, t0, x0)∥
2

p ε∥ϕθ(t, t0, x0)∥
2

q

]
, ε > 0.

By Young’s inequality, we obtain

d

dt
(Wθ(t, ϕθ(t, t0, x0))) ⩽ −c3∥ϕθ(t, t0, x0)∥2 + c4

[ρp(t)
εp

∥ϕθ(t, t0, x0)∥2 + εq∥ϕθ(t, t0, x0)∥2
]

⩽ −(c3 − εq)∥ϕθ(t, t0, x0)∥2 +
c4
εp

ρp(t)∥ϕθ(t, t0, x0)∥2.

If one chooses 0 < ε < q
√
c3, then we obtain the following inequality

d

dt
(Wθ(t, ϕθ(t, t0, x0))) ⩽ −c3 − εq

c2
Wθ(t, ϕθ(t, t0, x0)+

c4
c1εp

ρp(t)Wθ(t, ϕθ(t, t0, x0).

By integration the above inequality between t and t0, we obtain
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∫ t

t0

d
ds

(
Wθ(s, ϕθ(s, t0, x0))

)
Wθ(s, ϕθ(s, t0, x0)

ds ⩽ −c3 − εq

c2
(t− t0) +

∫ t

t0

c4
c1εp

ρp(s)ds

⩽ −c3 − εq

c2
(t− t0) +

c4
c1εp

∥ρ∥pp

Thus, we obtain the estimation

ln
[Wθ(t, ϕ(t, t0, x0))

Wθ(t0, x0)

]
⩽ −c3 − εq

c2
(t− t0) +

c4
c1εp

∥ρ∥pp

It follows that, for all t ⩾ t0 ⩾ 0 and x0 ∈ Rn

∥ϕθ(t, t0, x0)∥ ⩽
√

c2
c1
e

c4
2c1εp

∥ρ∥p
p∥x0∥e−

c3−εq

2c2
(t−t0), ∀ θ ∈ Rm.

■

Now, we study the case when the perturbation term satisfies the following assumption

(H3) There exists a continuous and integrable function ρ : [0,+∞[−→ [0,+∞[, such
that

∥g(t, x, θ)∥ ⩽ ρ(t)∥x∥α, 0 < α < 1, ∀ t ⩾ 0, ∀x ∈ Rn, ∀ θ ∈ Rm.

Remark 1 In this case the Lyapunov function Wθ(t, x) does not directly that the per-
turbed system is globally asymptotically stable. That is why we will seek a Lyapunov
function having the following form

Vθ(t, x) = Wθ(t, x) + Ψθ(t, x)

witch satisfies,

d1(∥x∥) ⩽ Vθ(t, x) ⩽ d2(∥x∥),

and

V̇θ(t, x) = Ẇθ(t, x) ⩽ −c3∥x∥2,

with d1, d2 are two K∞ functions.

The next proposition shows the global uniform boundedness of solution of perturbed
system (1) under conditions (H1) and (H3).

Proposition 4.2 Under the assumptions (H1) and (H3), the solution ϕθ(., t0, x0) of
the perturbed system (1) is globally uniformly bounded.
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Proof. Let (t0, x0) ∈ [0,+∞[×Rn\{0} an initial condition. The derivative of Wθ(t, x)
along the trajectories of (1) is given by, for all t ⩾ t0 ⩾ 0

d

dt
(Wθ(t, ϕθ(t, t0, x0))) =

dWθ

dt
(t, ϕθ(t, t0, x0)) +

dWθ

dx
(t, ϕθ(t, t0, x0)).f(t, ϕθ(t, t0, x0), θ)

+
dWθ

dx
(t, ϕθ(t, t0, x0)).g(t, ϕθ(t, t0, x0), θ).

It follows by assumption (H1), that

d

dt
(Wθ(t, ϕθ(t, t0, x0))) ⩽

dWθ

dx
(t, ϕθ(t, t0, x0)).g(t, ϕθ(t, t0, x0), θ),

⩽ c4ρ(t)∥ϕθ(t, t0, x0)∥1+α

⩽ c4ρ(t)
[
(∥ϕθ(t, t0, x0)∥)2

] 1+α

2

⩽ c4ρ(t)β
(Wθ(t, ϕ(t, t0, x0))

c1

)
; β(r) = r

1+α

2 .

By integration between t and t0, we obtain the inequality

∫ t

t0

d
ds

(
Wθ(s, ϕθ(s, t0, x0))

)
c1β

(
Wθ(s,ϕθ(s,t0,x0)

c1

) ds ⩽
∫ t

t0

c4
c1
ρ(s)ds ⩽ c4

c1
∥ρ∥1. (6)

Let us consider the following function H defined by,

H(r) =

∫ r

a

ds

β(s)
=

2

1− α

(
r

1−α

2 − a
1−α

2

)
; r ⩾ 0,

with

a =
(c4(1− α)

2c1
∥ρ∥1

) 2

1−α

.

H(.) is a continuous and strictly nondecreasing function from [0,+∞[ to [ −2
1−αa

1−α

2 ,+∞[,

which implies that it is invertible. The explicit form of H−1 is given by

H−1(r) =
[1− α

2
r + a

1−α

2

] 2

1−α

.

By using the inequality (6), we obtain[
H
(Wθ(s, ϕ(s, t0, x0))

c1

)]t
t0
⩽ c4

c1
∥ρ∥1.

Thus

∥ϕθ(t, t0, x0)∥2 ⩽ H−1
[
H
(c2
c1
∥x0∥2

)
+

c4
c1
∥ρ∥1

]
.
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Let us consider the set

I =
{
r ⩾ 0; H

(c2
c1
r2
)
+

c4
c1
∥ρ∥1 ⩽ 0

}
.

Since a =
(c4(1− α)

2c1
∥ρ∥1

) 2

1−α

, then we have the following equivalence

r ∈ I ⇐⇒ r = 0.

It follows that for all ∥x0∥ > 0, we have

H
(c2
c1
∥x0∥2

)
+

c4
c1
∥ρ∥1 > 0.

By using the fact that the function H−1(.) is strictly increasing function, the solution
ϕθ(., t0, x0) satisfies

∥ϕθ(s, t0, x0)∥2 ⩽ H−1
[
2H

(c2
c1
∥x0∥2

)
+

2c4
c1

∥ρ∥1
]

=
[
2
(c2
c1

) 1−α

2 ∥x0∥1−α − a
1−α

2 +
c4(1− α)

2c1
∥ρ∥1

] 2

1−α

= 4
1

1−α

(c2
c1

)
∥x0∥2.

Therefore, the solution ϕθ(., t0, x0) of the perturbed system (1) satisfies the estimation

∥ϕθ(s, t0, x0)∥ ⩽ 2
1

1−α

√
c2
c1
∥x0∥, ∀ s ⩾ t0 ⩾ 0, ∀ θ ∈ Rm.

■

So, we have the following corollary, whose proof is obvious.

Corollary 4.3 The equilibrium point x = 0 of the perturbed system (1) is uniformly
stable.

Now, some proprieties on the cross term Ψ can be given.

Proposition 4.4 [1] Under the assumptions (H1) and (H3), the function Ψθ(t, x) exists
and continuous on [0,+∞[×Rn. Moreover, the derivative of Ψθ(t, x) along the trajectories
of the perturbed system (1) exists and it is given by:

∀t ⩾ 0, ∀x ∈ Rn, ∀ θ ∈ Rm, Ψ̇θ(t, x) = −∂Wθ

∂x
(t, x).g(t, x, θ). (7)

The derivative of Vθ(t, x) along the trajectories of the system (1) is given by

V̇θ(t, x) = Ẇθ(t, x).

Proof. For the proof you can see [1]. ■
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5. Asymptotic stability of perturbed system

In this section, assume that the function f satisfies the Lipschitz condition where the
Lipschitz constant is a function that varies with time. Let us consider the following
assumption

(H4) There exists a function L : R+ −→ R+ such that:
i) ∥f(t, x, θ)− f(t, y, θ)∥ ⩽ L(t)∥x− y∥, ∀ t ⩾ 0, x, y ∈ Rn, θ ∈ Rm

ii)
∫ t+h
t L(u)du ⩽ φ(h), ∀ t, h ⩾ 0, where φ(.) is a strictly increasing function
such that φ(0) = 0 and lim

h−→+∞
φ(h) = +∞

Remark 2

(1) The assumption (H4) generalizes the case when the function is globally uniformly
Lipschitzian (L(t) = L) and φ(h) = Lh.

(2) If there exists p > 1, such that L ∈ Lp([0,+∞[), then φ(h) = h
p−1

p ∥L∥p.

Proposition 5.1 Suppose assumption (H1), (H3) and (H4) hold. If ρ ∈ L1∩Lp, p ⩾ 1,
then the origin x = 0 of the perturbed system (1) is globally uniformly asymptotically
stable.

Proof. To prove that the origin of perturbed system (1) is globally uniformly asymptot-
ically stable , it suffices to prove that the Lyapunov function Vθ(t, x) is positive definite
and its derivative along the trajectories of the perturbed system (1) is negative definite.
Firstly by proposition 4.4, we have

V̇θ(t, x) = Ẇθ(t, x) +
∂Wθ

∂x
(t, x)g(t, x, θ) + Ψ̇θ(t, x) = Ẇθ(t, x) ⩽ −c3∥x∥2,

and

Vθ(t, x) ⩽ c2∥x∥2 +
∫ +∞

0

∣∣∣∂Wθ

∂x
(s, ϕθ(s, t, x))g(s, ϕθ(s, t, x), θ)

∣∣∣ds
⩽ c2∥x∥2 + c4

∫ +∞

0
ρ(s)∥ϕθ(s, t, x)∥1+αds

⩽ c2∥x∥2 + ∥ρ∥12
1+α

1−α

(c2
c1

) 1+α

2 ∥x∥1+α := d2(∥x∥)

with

d2(r) = c2r
2 + ∥ρ∥12

1+α

1−α

(c2
c1

) 1+α

2

r1+α,

which is a class K∞ function. Secondly, by Theorem 1 in [1], the Lyapunov function
Vθ(t, x) satisfies the inequality

Vθ(t, x) ⩾
∫ +∞

t
c3∥ϕθ(s, t, x)∥2ds.
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Since

ϕθ(s, t, x) = x+

∫ s

t
ϕ̇θ(u, t, x)du = x+

∫ s

t
f(u, ϕθ(u, t, x), θ) + g(u, ϕθ(u, t, x), θ)du,

thus

∥x∥ ⩽ ∥ϕθ(s, t, x)∥+
∫ s

t
L(u)∥ϕθ(u, t, x)∥du+

∫ s

t
ρ(u)∥ϕθ(u, t, x)∥αdu

⩽ ∥ϕθ(s, t, x)∥+ 2
1

1−α

√
c2
c1
∥x∥

∫ s

t
L(u)du+ 2

α

1−α

(c2
c1

)α

2 ∥x∥α
∫ s

t
ρ(u)du.

We will discuss two cases
Case 1: For ∥x∥ ⩾ 1, the above inequality implies that,

∥x∥ ⩽ ∥ϕθ(s, t, x)∥+ 2
1

1−α

√
c2
c1
∥x∥

∫ s

t
L(u)du+ 2

α

1−α

(c2
c1

)α

2 ∥x∥
∫ s

t
ρ(u)du.

Therefore

∥ϕθ(s, t, x)∥ ⩾ ∥x∥ − ∥x∥
[
2

1

1−α

√
c2
c1

∫ s

t
L(u)du+ 2

α

1−α

(c2
c1

)α

2

∫ s

t
ρ(u)du

]
.

We have: s ⩾ t ⩾ 0, thus we can right s = t+ h, h ∈ R+.
We obtain the following inequality:

∥ϕθ(t+ h, t, x)∥ ⩾ ∥x∥ − ∥x∥
[
2

1

1−α

√
c2
c1

∫ t+h

t
L(u)du+ 2

α

1−α

(c2
c1

)α

2

∫ t+h

t
ρ(u)du

]
⩾ ∥x∥ − ∥x∥

[
2

1

1−α

√
c2
c1
φ(h) + 2

α

1−α

(c2
c1

)α

2

∫ t+h

t
ρ(u)du

]
, ∀h ⩾ 0

⩾ ∥x∥ − ∥x∥
[
2

1

1−α

√
c2
c1
φ(h) + 2

α

1−α

(c2
c1

)α

2 ∥ρ∥ph
p−1

p

]
, ∀h ⩾ 0

Consider now the function,

φ(h) = 2
1

1−α

√
c2
c1
φ(h) + 2

α

1−α

(c2
c1

)α

2 ∥ρ∥ph
p−1

p , h ∈ R+.

The map

h 7−→ φ(h),
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is a continuous function from [0,+∞[ to [0,+∞[. Since φ(0) = 0 and lim
h−→+∞

φ(h) = +∞,

then we can conclude that there exists a positive real h0 > 0, such that

φ(h0) =
1

2
.

and for all h ∈ [0, h0], we have

φ(h) ⩽ 1

2
.

Therefore

∥ϕθ(t+ h, t, x)∥ ⩾ ∥x∥
2

,∀h ∈ [0, h0],

witch implies that

∥ϕθ(s, t, x)∥ ⩾ ∥x∥
2

, ∀s ∈ [t, t+ h0].

It follows that the Lyapunov function Vθ(t, x) verified,

Vθ(t, x) ⩾
∫ +∞

t
c3∥ϕθ(s, t, x)∥2ds

⩾
∫ t+h0

t
c3∥ϕθ(s, t, x)∥2ds

⩾ h0c3
4

∥x∥2.

Case 2 : For ∥x∥ < 1, which can be have

∥x∥ ⩽ ∥ϕθ(s, t, x)∥+ 2
1

1−α

√
c2
c1
∥x∥

∫ s

t
L(u)du+ 2

α

1−α

(c2
c1

)α

2 ∥x∥α
∫ s

t
ρ(u)du. (8)

Since,

2
−1

1−α

√
c1
c2
∥ϕθ(s, t, x)∥ ⩽ ∥x∥ ⩽ 1,

then

2
−1

1−α

√
c1
c2
∥ϕθ(s, t, x)∥ ⩽

[
2

−1

1−α

√
c1
c2
∥ϕθ(s, t, x)∥

]α
.
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Therefore the estimation (8) implies that

2
−1

1−α

√
c1
c2
∥x∥ ⩽

[
2

−1

1−α

√
c1
c2
∥ϕθ(s, t, x)∥

]α
+∥x∥α

∫ s

t
L(u)du+

1

2

(c2
c1

)α−1

2 ∥x∥α
∫ s

t
ρ(u)du.

This yields

2
−1

1−α

√
c1
c2
∥x∥ ⩽

[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α
+ ∥x∥α

[ ∫ t+h

t
L(u)du+

1

2

(c2
c1

)α−1

2

∫ t+h

t
ρ(u)du

]
⩽

[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α
+ ∥x∥α

[
φ(h) +

1

2

(c2
c1

)α−1

2

∫ t+h

t
ρ(u)du

]
⩽

[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α
+ ∥x∥αΩ(h); h ⩾ 0

with

Ω(h) = φ(h) +
1

2

(c2
c1

)α−1

2 ∥ρ∥ph
p−1

p , h ⩾ 0.

Let us consider β, γ > 0 such that 1 + β = α+ γ. We have

2
−1

1−α

√
c1
c2
∥x∥ ⩽

[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α
+ ∥x∥αΩ(h); h ⩾ 0,

then

2
−1

1−α

(c1
c2

)α

2 ∥x∥1+β ⩽
[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α
+ ∥x∥α+βΩ(h)

⩽
[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α
+ ∥x∥αΩ(h)

⩽
[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α+γ
+ ∥x∥α+γΩ(h), ∀h ⩾ 0

Now, let h2 > 0 such that

Ω(h) ⩽
2

−1

1−α

(
c1
c2

)α

2

2
, ∀h ∈ [0, h2],

and

Ω(h2) =
2

−1

1−α

(
c1
c2

)α

2

2
.



B. Ghanmi et al. / J. Linear. Topological. Algebra. 05(04) (2016) 241-261. 253

It follows that

[
2

−1

1−α

√
c1
c2
∥ϕθ(t+ h, t, x)∥

]α+γ
⩾

2
−1

1−α

(
c1
c2

)α

2

2
∥x∥α+γ , ∀h ∈ [0, h2].

Thus

∥ϕθ(t+ h, t, x)∥ ⩾ 2
1

1−α

√
c2
c1

(2 −1

1−α

(
c1
c2

)α

2

2

) 1

α+γ ∥x∥, ∀h ∈ [0, h2],

therefore

∥ϕθ(s, t, x)∥ ⩾ 2
1

1−α

√
c2
c1

(2 −1

1−α

(
c1
c2

)α

2

2

) 1

α+γ ∥x∥, ∀ s ∈ [t, t+ h2].

Hence, we can conclude that,

Vθ(t, x) ⩾
∫ t+h2

t
c3∥ϕθ(s, t, x)∥2ds ⩾ c3h22

1

1−α

√
c2
c1

(2 −1

1−α

(
c1
c2

)α

2

2

) 1

α+γ ∥x∥2.

Let

d1 = inf
(
c3h22

1

1−α

√
c2
c1

(2 −1

1−α

(
c1
c2

)α

2

2

) 1

α+γ

,
h0c3
4

)
It follows that the function Vθ(t, x) satisfies

d1∥x∥2 ⩽ Vθ(t, x) ⩽ d2(∥x∥), ∀ (t, x) ∈ R+ × Rn, ∀ θ ∈ Rm,

and

V̇θ(t, x) = Ẇθ(t, x) ⩽ −c3∥x∥2, ∀ (t, x) ∈ R+ × Rn \ {0}, ∀ θ ∈ Rm.

Hence, that the equilibrium point x = 0 of (1) is globally uniformly asymptotically stable.
■

6. Strictification

The strict Lyapunov functions are of great importance in the study of the stability
of systems, and are a key tool for robustness analysis. In general, it is more difficult to
construct strict Lyapunov functions for time-varying systems than it is for time-invariant
systems. In this section we give a method for constructing strict Lyapunov functions for
time-varying systems. The challenge is then to transform non-strict Lyapunov functions
satisfying this more complicated decay condition into explicit strict Lyapunov functions.
Assume the following assumptions.
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(H’1) There is a Lyapunov function Wθ(t, x), periodic in time and of period T and a
non-negative bounded continuous function p : R+ −→ R+ such that

i) c1∥x∥2 ⩽ Wθ(t, x) ⩽ c2∥x∥2, ∀ (t, x) ∈ [0,+∞[×Rn, ∀ θ ∈ Rm,

ii) Ẇθ(t, x) =
∂Wθ

∂t
(t, x) +

∂Wθ

∂x
(t, x).f(t, x, θ) ⩽ −p(t)∥x∥2 ⩽ 0, ∀ θ ∈ Rm,

iii) ∥∂Wθ

∂x
(t, x)∥ ⩽ c4∥x∥, ∀(t, x) ∈ [0,+∞[×Rn, ∀ θ ∈ Rm.

(H’2) The constant

∫ T

0
p(s)ds > 0.

Theorem 6.1 If ρ ∈ Lp, then under assumption (H2),(H’1) and (H’2) the system (1)
is globally uniformly exponentially stable.

Proof. Consider the following function

P (t) = −t

∫ T

0
p(s)ds+ T

∫ t

0
p(s)ds

P (t) is a T -periodic and continuous function, it follows that is bounded, thus there is
P > 0 such that for all t ∈ R+

|P (t)| ⩽ P .

Let us consider the function

Uθ(t, x) = (a1 + a2P (t))Wθ(t, x)
2, (9)

with a1, a2 > 0, such that

a1 ⩾ max(2Ta2c2, 2Pa2). (10)

and consider the following two functions defined on R+ by Γ(v) = a1v
2, λ(v) = a2v

2.
It’s clear that Γ(.), λ(.) ∈ C1 ∩ K∞ and λ(.) is positive define function, in addition
λ′(v) = 2a2v ⩾ 0. By (10), we can conclude thatΓ(v) ⩾ 2Pλ(v)

1
2Γ

′(v) ⩾ Pλ′(v)
(11)

witch implies that

1

4
Γ′(Wθ(t, x))∥x∥2 ⩾ Tλ(Wθ(t, x)). (12)

Since

Uθ(t, x) = Γ(Wθ(t, x)) + P (t)λ(Wθ(t, x)),
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then the function Uθ(t, x) satisfies the inequality

a2Pc21∥x∥4 ⩽ Uθ(t, x) ⩽
3

2
a1c

2
2∥x∥4.

The derivative of Uθ(t, x) along the trajectories of (2) satisfies

U̇θ(t, x) = Γ′(Wθ(t, x))Ẇθ(t, x) +
[
−
∫ T

0
p(s)ds+ Tp(t)

]
λ(Wθ(t, x)) + P (t)λ′(Wθ(t, x))Ẇθ(t, x)

⩽ −1

2
Γ′(Wθ(t, x))p(t)∥x∥2 +

[
−
∫ T

0
p(s)ds+ Tp(t)

]
λ(Wθ(t, x))

⩽ −1

4
Γ′(Wθ(t, x))p(t)∥x∥2 −

∫ T

0
p(s)dsλ(Wθ(t, x))

⩽ −
∫ T

0
p(s)dsλ(c1∥x∥2) = −a2c

2
1

∫ T

0
p(s)ds∥x∥4.

It follows that the nominal system (2) is globally uniformly exponentially stable. The
derivative of Uθ(t, x) along the trajectories of the perturbed system (1) is given by

U̇θ(t, x) = U̇θ(t, x) +
∂Uθ

∂x
(t, x).g(t, x, θ)

= U̇θ(2)(t, x) + 2
(
a1 + a2P (t)

)
Wθ(t, x)

∂Wθ

∂x
(t, x).g(t, x, θ)

⩽ −a2c
2
1

∫ T

0
p(s)ds∥x∥4 + 2c4(a1 + a2P )ρ(t)∥x∥4

⩽ −2a2c
2
1

3a1c22

∫ T

0
p(s)dsUθ(t, x) +

2c4(a1 + a2P )

a2Pc21
ρ(t)Uθ(t, x).

Let

k1 =
2a2c

2
1

3a1c22

∫ T

0
p(s)ds, k2 =

2c4(a1 + a2P )

a2Pc21
.

If p = 1, by integration between t and t0 we obtain the following estimation

∥ϕθ(s, t0, x0)∥ ⩽ 4

√
3a1c22
2a2Pc21

e
k2
4
∥ρ∥1∥x0∥e−

k1
4
(s−t0).

If p > 1, let q such that
1

p
+

1

q
= 1.
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We have

U̇θ(t, x) ⩽ −k1Uθ(t, x) + k2ρ(t)Uθ(t, x)

⩽ −k1Uθ(t, x) + k2

[ρ(t)
ε

U
1

p

θ (t, x)× εU
1

q

θ (t, x)
]
; ε > 0.

By Young’s inequality, we obtain the inequality

U̇θ(t, x) ⩽ −
(
k1 − k2ε

q
)
Uθ(t, x) +

k2
εp

ρp(t)Uθ(t, x),

therefore, if

0 < ε < q

√
k1
k2

,

then the solution of the perturbed system satisfies the estimation

∥ϕθ(s, t0, x0)∥ ⩽ 4

√
3a1c22
a2Pc21

e
k2∥ρ∥pp

4εp ∥x0∥e−
k1−k2εq

4
(s−t0),

This completes the proof of the Theorem 6.1. ■

Remark 3 One can extend Theorem 6.1 to the case of systems which are not periodic

but when there exist T > 0 and δ > 0 such that, for all t ⩾ 0,

∫ t+T

t
p(s)ds ⩾ δ. In this

case the function P (t) is given by

P (t) =

∫ t

t−T

∫ T

s
p(r)drds

and the strict Lyapunov function Uθ(t, x) satisfies the following conditions

a1c
2
1∥x∥4 ⩽ Γ(Wθ(t, x)) ⩽ Uθ(t, x) ⩽

3

2
Γ(Wθ(t, x)) ⩽

3a1c
2
2

2
∥x∥4,

and

U̇θ(2)(t, x) ⩽ −δa2c
2
1∥x∥4.

7. Examples

In this section, we give three examples. The first one to illustrate the exponential stability
given by proposition 4.1, and the second to illustrate the asymptotic stability given by
proposition 4.4. The third one is given to illustrate the case when the derivative of the
Lyapunov function along the trajectories of the nominal system is negative non-define.
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Example 7.1 Let us consider the following system ẋ1 = −(1 + θ2 + t2)x1 +
3
√

ρ(t)

1+2θ4 x2

ẋ2 = −(1 + 2θ2 + t2)x2 +
3
√

ρ(t)

2+3θ4 x1

(13)

where ρ is a continuous, integrable and unbounded function defined by

ρ(t) =


0 , t ∈ [0, 2− 1

8 ]
n4t+ (n− n5) , t ∈ [n− 1

n3 , n]
−n4t+ (n+ n5) , t ∈ [n, n+ 1

n3 ]
0 , t ∈ [n+ 1

n3 , n+ 1− 1
(n+1)3 ]

The system satisfies the conditions of proposition 4.1, thus it’s globally uniformly asymp-
totically stable.
For simulation, if we select [x1, x2]

T = [2,−2]T as initial condition and θ = 0, then we
obtain the following result ( see figure 1).

0 1 2 3 4 5 6 7 8
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−1.5

−1

−0.5

0

0.5

1

1.5

2

time (s)

x
1
(t)

x
2
(t)

Figure 1. The trajectories of the system (13)
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Example 7.2 Let us consider the following system

ẋ = f(t, x, θ) + g(t, x, θ), (14)

with

f(t, x, θ) =

−
√

ρ(t)+1.2

1+θ2 x1

−
√

ρ(t)+1

1+θ4 x2


and

g(t, x, θ) = ρ(t)

− x2

1+θ2+(x2
1+x2

2)
3
8

− x1

1+θ4+(x2
1+x2

2)
3
8

 .

when ρ : R+ −→ R+ is a continuous and integrable function.
Consider the Lyapunov function Wθ(t, x) = ∥x∥2 = x21 + x22. The derivative of Wθ(t, x)
along the trajectories of the nominal system is given by

Ẇθ(t, x) = 2(x1ẋ1 + x2ẋ2) ⩽ −2Wθ(t, x),

it follows that the nominal system is globally uniformly exponentially stable.
The functions f and g satisfie the conditions

∥g(t, x, θ)∥ ⩽ ρ(t)∥x∥
1

4 , ∀ (t, x) ∈ R+ × Rn

and

∥f(t, x, θ)− f(t, y, θ)∥ ⩽ (1.2 +
√

ρ(t))∥x− y∥ := L(t)∥x− y∥.

The function L(.) satisfies∫ t+h

t
L(u)du =

∫ t+h

t
1.2 +

√
ρ(u)du ⩽ 1.2h+ ∥ρ∥1

√
h := φ(h)
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If we choose ρ(t) as in example 7.1, [x1, x2]
T = [3,−2]T as initial condition and θ = 0,

then we obtain the following result (see figure 2).
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Figure 2. The trajectories of the system (7.2)

Example 7.3 Let us consider the following system
ẋ1 = −(1 + θ2)(1 + cos(t))x1 +

ρ(t)
1+3θ4x2

ẋ2 = −(1 + θ2)(1 + cos(t))x2 +
ρ(t)

1+4θ2x1

(15)

where ρ is a continuous, integrable and unbounded function defined in example (7.1).
The above system has the same form of (1) where

f(t, x, θ) =

[
−(1 + θ2)(1 + cos(t))x1
−(1 + θ2)(1 + cos(t))x2

]
,

and

g(t, x, θ) = ρ(t)

[ 1
1+3θ4x2

1
1+4θ2x1

]
.

Let us consider the Lyapunov function

Wθ(t, x) = (1 + θ2e−θ2

)(x21 + x22).

The derivative of Wθ(t, x) a long the trajectories of the nominal system is given by,

Ẇθ(t, x) = −2(1 + θ2)(1 + cos(t))Wθ(t, x) = −p(t)Wθ(t, x) ⩽ 0,

where p(t) = 2(1 + cos(t)). We notice that Ẇθ((2k + 1)π, x) = 0, ∀ k ∈ Z.
The strict Lyapunov function Uθ(t, x) is given by
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Uθ(t, x) = 2π(1 + θ2e−θ2

)2(2 + sin(t)))∥x∥4,

and we have the following conditions:

i) 2π∥x∥4 ⩽ Uθ(t, x) ⩽ 6π(1 + e−1)∥x∥4
ii) The derivative of Uθ(t, x) a long the trajectories of the nominal system is given

by

U̇θ(t, x) ⩽ −2π(1 + e−1)∥x∥4.

Now, if we choose ρ(t) a function as in example 7.1 and [x1, x2]
T = [3,−2]T as initial

condition and θ = 0, then the origin of the system is G.U.E.S (see figure 3).
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Figure 3. The trajectories of the system (15)

8. Conclusion

In this paper, we dealt with the analysis of stability problem of nonlinear time-varying
parameterised perturbed systems. We have established the global uniform exponential
stability and global uniform asymptotic stability for some classes of perturbed parame-
terised systems, by using Lyapunov techniques. The restriction about the perturbed term
is that the perturbation is bounded by an integrable function not necessary bounded in
time under the assumption that the nominal system is globally uniformly exponentially
stable. Some illustrative examples in the plane are given showing the importance of this
study.
Acknowledgements The authors wish to thank the reviewers for their valuable and
careful comments.
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