A numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods
Subject Areas : History and biographyM. Nili Ahmadabadi 1 , H. Laeli Dastjerdi 2
1 - Department of Mathematics, Najafabad Branch, Islamic Azad University,
Najafabad, Iran
2 - Department of Mathematics, Najafabad Branch, Islamic Azad University,
Najafabad, Iran
Keywords:
Abstract :
[1] H. Wendland, Scattered Data Approximation, Cambridge University Press, 2005.
[2] W.R. Madych, S.A. Nelson, Multivariate interpolation and conditionally positive definite functions II, Math. Comput. 54 (189) (1990) 211-230.
[3] W.R. Madych, S.A. Nelson, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory 70 (1992) 94-114.
[4] P.J. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations, Numer. Math. 56 (1989) 409-424.
[5] H. Brunner, P.J. van der Houwen, The numerical solution of Volterra equations, CWI Monographs, vol. 3, North-Holland, Amsterdam, 1986.
[6] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal. 27 (4) (1990) 987-1000.
[7] J.P. Kauthen, Continuous time collocation method for Volterra-Fredholm integral equations, Numer. Math. 56 (1989) 409-424.
[8] K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl. 37 (1999) 1-8.
[9] A.M. Wazwaz, A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput. 127 (2002) 405-414.
[10] E. Banifatemi, M. Razzaghi, S. Yousefi, Two-dimensional Legendre Wavelets Method for the mixed VolterraFredholm integral equations, J. Vibr. Control. 13 (2007) 1667-1675.
[11] R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76 (1971) 1905-1915.
[12] H.R. Thieme, A model for the spatio spread of an epidemic, J. Math. Biol. 4 (1977) 337-351.
[13] G. Han, L. Zhang, Asymptotic expansion for the trapezoidal Nystrom method of linear VolterraFredholm equations, J. Comput. Appl. Math. 51 (1994) 339-348.
[14] M. Hadizadeh, M. Asgari, An effective numerical approximation for the linear class of mixed integral equations, Appl. Math. Comput. 167 (2005) 1090-1100.
[15] E. Babolian, A.J. Shaerlar, Two dimensional block pulse functions and application to solve Volterra-Fredholm integral equations with Galerkin method, Int. J. Contemp. Math. Sci. 6 (2011) 763-770.
[16] H. Laeli Dastjerdi, F. M. Maalek Ghaini, M. Hadizadeh, A meshless approximate solution of mixed VolterraFredholm integral equations, Int. J. Comput. Math. 90 (2013) 527-538.
[17] R.L. Hardy, Theory and applications of the multiquadric-biharmonic method. 20 years of discovery 1968- 1988, Comput. Math. Appl. 19 (8-9) (1990) 163-208.
[18] E.J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluiddynamics. I. Surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (8-9) (1990) 127-145.
[19] E.J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluiddynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl. 19 (8-9) (1990) 147-161.
[20] A. Cardone, E. Messina, E. Russo, A fast iterative method for discretized Volterra-Fredholm integral equations, J. Comput. Appl. Math. 189 (2006) 568-579.
[21] Y.C. Hon, X.Z. Mao, An efficient numerical scheme for Burgers equation, Appl. Math. Comput. 95 (1998) 37-50.
[22] Y.C. Hon, K.F. Cheung, X.Z. Mao, E.J. Kansa, Multiquadric solution for shallow water equations, ASCE J. Hydraul. Eng. 125 (1999) 524-533.
[23] M. Zerroukat, H. Power, C.S. Chen, A numerical method for heat transfer problem using collocation and radial basis functions, Int. J. Numer. Meth. Eng. 42 (1992) 1263-1278.
[24] K. E. Atkinson, F. A. Potra, Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numer. Anal. 24 (1987) 1352-1373.
[25] K. Atkinson, J. Flores, The discrete collocation method for nonlinear integral equations, IMA J. Numer. Anal. 13 (1993) 195-213.
[26] G.E. Fasshauer, Meshfree methods. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, 27 (2006) 33-97.