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Abstract. In this paper, we propose a new numerical method for solution of Urysohn
two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-
rectangular domain. The method approximates the solution by the discrete collocation
method based on inverse multiquadric radial basis functions (RBFs) constructed on a set
of disordered data. The method is a meshless method, because it is independent of the geom-
etry of the domain and it does not require any background interpolation or approximation
cells. The error analysis of the method is provided. Numerical results are presented, which
confirm the theoretical prediction of the convergence behavior of the proposed method.
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1. Introduction

The nonlinear mixed Volterra-Fredholm integral equation is given by

u(x, t)−
∫ t

0

∫
Ω
F (x, t, ξ, s, u(ξ, s))dξds = f(x, t), (x, t) ∈ Ω× [0, T ], (1)

∗Corresponding author.
E-mail address: mohammad.nili@gmail.com (M. Nili Ahmadabadi).

Print ISSN: 2252-0201 c⃝ 2015 IAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir



290 M. Nili Ahmadabadi et al. / J. Linear. Topological. Algebra. 04(04) (2015) 289-304.

where u(x, t) is an unknown function and f(x, t) and F (x, t, ξ, s, u) are given analytical
real valued functions defined on D = Ω× [0, T ] and C(D2 × R), respectively and Ω is a
compact subset of Rn(n = 1, 2, 3), with convenient norm ∥.∥.

Existence and uniqueness results for (1) may be found in [4, 5]. This type of equations
arise in the theory of parabolic boundary value problems, the mathematical modeling of
the spatio-temporal development of epidemic models and various physical and biologi-
cal problems. Detailed descriptions and analysis of these models may be found in [12].
Equation (1) can be written in the abstract form

u = T u,

where the integral operator T : C(Ω× [0, T ]) → C(Ω× [0, T ]) is defined as

T u(x, t) =
∫ t

0

∫
Ω
F (x, t, ξ, s, u(ξ, s))dξds+ f(x, t). (2)

In this paper we assume that Ω is a bounded two-dimensional non-rectangular domain.
Few numerical methods have been given for numerical solution of (1). Kauthen [7] pre-
sented continuous time collocation method and time discretization collocation methods,
and analyzed the discrete convergence properties. The results of Kauthen have been ex-
tended to nonlinear Volterra-Fredholm integral equations by Brunner [6]. Also Banifatemi
et al. [10] applied two-dimensional Legendre wavelets method to mixed Volterra-Fredholm
integral equations. Maleknejad and Hadizadeh [8] and Wazwaz [9] used a technique based
on the Adomian decomposition method for solution of (1). Cardone, Messina and Russo
applied an iterative method for this equation[20]. Han and Zhang [13] presented a partic-
ular Nystrom method for the linear case of (1). The block pulse functions and Chebyshev
polynomials have been used for numerical solution of (1)[14, 15]. Moreover, Laeli et al
[16] obtained a numerical solution for linear Mixed Volterra-Fredholm integral equations
by using the RBFs on the non-rectangular domain. For solving (1) on a non-rectangular
region, the domain must be segmented to small triangles and numerical integration over
such segments is needed. Triangulations and mesh refinement are major difficulties in
these methods. Therefore, to release from triangulations and mesh refinement, we can
use methods based upon the scattered data approximation that approximate a func-
tion without any mesh generation on the domain. Radial basis functions (RBFs) are
probably best known for their applications to problems with scattered data. The Multi-
quadric (MQ) RBF interpolation method was developed by Roland Hardy who described
and named the method in a paper appeared in 1971 [17]. In 1990 Kansa first used the
MQ-RBFs method to solve differential equations [18, 19]. Kansa’s method was recently
extended to solve various ordinary and partial differential equations[21–23].

In this paper, we will use the inverse multiquadric radial basis function approximation
for numerical solution of nonlinear mixed Volterra-Fredholm integral equations on a non-
rectangular region.

The remainder of the paper is organized as follows: In section 2 we give a brief survey
of radial basis functions. In section 3 the proposed method is introduced and applied
on equation (1). In Section 4, we provide error analysis for the proposed method. Three
examples are solved to demonstrate the validity of our method in Section 5.
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2. Radial basis function approximation

In recent years meshless methods have gained considerable attention in engineering and
applied mathematics. A meshless method does not require a mesh to discretize the do-
main of the problem under consideration, and the approximate solution is constructed
entirely based on a set of scattered nodes. Radial basis functions (RBFs) is one of the
most developed meshless methods that has attracted attention in recent years and form
a primary tool for multivariate interpolation[11]. They are also receiving increased at-
tention for solving PDE’s on irregular domains. The main advantage of radial basis
functions is that they involve a single independent variable regardless of the dimension
of the problem.

In the following, we want to consider a general algorithm of the radial basis function
approximation, but prior to that we quote the following preliminaries which follow from
[1, 26].

Definition 2.1 A function Φ : Rd → R is said to be radial if there exists a univariate
function ϕ : [0,∞) → R such that Φ(x) = ϕ(r), where r = ∥x∥ and ∥.∥ is the usual
Euclidean norm on Rd.

Some of the most popular RBFs are given in Table 1.

Table 1. Some well-known functions that generate RBFs

Name of function Definition

Gaussian (GA) ϕ(r) = exp(−cr2), c > 0

Multiquadric (MQ) ϕ(r) = (−1)⌈β⌉(r2 + c2)
β
, c, β > 0, β ̸∈ N

Inverse multiquadric (IMQ) ϕ(r) = (r2 + c2)
−β
, c, β > 0

Thin plate splines ϕ(r) = (−1)k+1r2k log(r), k ∈ N

In the Table 1, ⌈β⌉ indicates the smallest integer greater than β.

Definition 2.2 ([1]): The fill distance of a given set X = {x1, ..., xn} consisting of
pairwise distinct points in Ω can be defined as

hX ,Ω = sup
x∈Ω

min
xj∈X

∥x− xj∥,

which indicates how well the data in the set X fill out the domain Ω.

Definition 2.3 ([1]) A set Ω is said to satisfy an interior cone condition if there exists
an angle θ ∈ (0, π2 ) and a radius r > 0 such that for every given x ∈ Ω a unit vector η(x)
exists such that the cone

C(x, η(x), θ, r) = {x+ λy : y ∈ Rd, ||y||2 = 1, yT η(x) ⩾ cos(θ), λ ∈ [0, r]}

is contained in Ω.

Definition 2.4 ([1]) Let H be a real Hilbert space of u : Ω → R. A function K : Ω×Ω →
R is called reproducing kernel for H if
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(1) K(x, .) ∈ H for all x ∈ Ω
(2) u(x) =< u,K(x, .) >H for all u ∈ H and all x ∈ Ω. If K(x, y) = ϕ(x− y), where

ϕ is a radial basis function, then it is shown that

Hϕ(Ω) = span{ϕ(.− y) : y ∈ Ω}

is the space with the bilinear form

<

N∑
j=1

cjϕ(.− xj),

N∑
k=1

dkϕ(.− yk) >ϕ=

N∑
j=1

N∑
k=1

cjdkϕ(xj , yk) (3)

Definition 2.5 ([1]) A real valued continuous even function ϕ is called positive definite
on Rs if

N∑
j=1

N∑
k=1

cjckϕ(xj − xk) ⩾ 0, (4)

for any N pairwise different points x1, x2, ..., xN ∈ Rs and C = [c1, c2, . . . , cN ]T ∈ RN .

The function ϕ is called strictly positive definite on Rs if the only vector C = 0 that
turns (4) into an equality is the zero vector.

As a conclusion, if a radial basis function is positive definite function, then the asso-
ciated interpolation matrix is a positive semi-definite and similarly, a strictly positive
definite function is associated with a positive definite interpolation matrix. Therefore,
by choosing a strictly positive definite function, the associated interpolation matrix is
non-singular. Examples of such functions are inverse multiquadric and Gaussian radial
basis functions.

Theorem 2.6 ([26]) Let ϕ be a radial basis and strictly positive definite function. Then
the bilinear form <,>ϕ defines an inner product on Hϕ(Ω). Moreover Hϕ(Ω) is a pre-
Hilbert space with reproducing ϕ.

Definition 2.7 ([1]) The native space Nϕ(Ω) of ϕ is now defined to be the completion
of Hϕ(Ω) with respect to the ϕ -norm ∥.∥ϕ , so that ∥u∥ϕ = ∥u∥Nϕ

(Ω) for all u ∈ Nϕ(Ω).

2.1 Interpolation by radial basis functions

Radial basis function interpolation to a continuous function f : Rd → R on a set
{x1, x2, . . . , xN} starts with a function Φ : Rd → R that is radial in the sense that
Φ(x) = ϕ(∥x∥), where ∥.∥ is the usual Euclidean norm on Rd. The approximation of a
function u(x), using radial basis function Φ(x) = ϕ(∥x∥), may be written as a linear
combination, usually it takes the following form

PNu(x) =

N∑
k=1

λkϕ(∥x− xk∥), (5)

where PN : C(Ω) → CN (Ω) is collocation projection operator on the collocation points
{x1, x2, . . . , xN}, and CN (Ω) = span{ϕ(∥x − x1∥), ϕ(∥x − x2∥), . . . , ϕ(∥x − xN∥)} has
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finite dimension. The interpolation problem is to find λi, i = 1, 2, ..., N such that the
interpolant PNu(x) through all data satisfies

PNu(xi) = u(xi), i = 1, 2, ..., N. (6)

This interpolation condition leads a linear system

AΛ = U, (7)

where A is N × N matrix with the elements Ai,j = ϕ(∥xi − xj∥), i, j = 1, 2, ..., N,
and Λ is the vector of coefficients of PNu(x) and the components of U are the data
u(xi), i = 1, 2, ..., N.

It has been shown that the associated interpolation matrix for inverse Multiquadric
RBFs is non-singular[1]. For the theoretical developments of the RBFs in scattered data
interpolation, Madych and Nelson [2, 3] showed that the inverse MQ-RBF interpolant
employs exponential convergence with minimal semi-norm errors.

3. Implementation of the numerical method

To apply the method, suppose 0 = t0 < t1 < ... < tM = T be a scattered set of
data in [0, T ] and {x0, x1, ..., xN} be a scattered set of nodes in Ω. The distribution of
nodes could be selected regularly or randomly. We assume that Ω usually has a non-
rectangular shape. According to the RBF collocation method, the approximation of the
function u(x, t) may be written as a linear combination of inverse multiquadric radial
basis functions as follows

PM,Nu(x, t) =

M∑
j=0

N∑
k=0

ck,jϕk(x)ηj(t), (x, t) ∈ Ω× [0, T ], (8)

where

ϕk(x) = (∥x− xk∥2 + c2)
−β
, c, β > 0

ηj(t) = ((t− tj)
2 + c2)−β, j = 0, ...,M.

For simplicity, we can write (8) as

PM,Nu(x, t) =

Q∑
µ=1

dµψµ(x, t), (x, t) ∈ Ω× [0, T ], (9)

where dµ = ck,j , ψµ(x, t) = ϕk(x)ηj(t) and Q = (M + 1)(N + 1).
Note that PM,N is a collocation projection operator that maps C(Ω) onto CM,N at the
collocation nodes, where CM,N = span{ψ1, ψ2, . . . , ψQ} has finite dimension. The index
µ is determined by µ = (N + 1)j + k + 1.
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Now by replacing (9) in (1) we have

Q∑
µ=1

dµψµ(x, t)−
∫ t

0

∫
Ω
K(x, t, ξ, s,

Q∑
µ=1

dµψµ(ξ, s))dξds = f(x, t),

(x, t) ∈ Ω× [0, T ].

(10)

To approximate the integrals in (10) we can transfer the integration interval [0, t] to the
fixed interval [−1, 1] by the linear transformation

s(t, θ) =
t

2
θ +

t

2
.

Then (10) takes the following form :

Q∑
µ=1

dµψµ(x, t)−
∫ 1

−1

∫
Ω

t

2
K(x, t, ξ, s(t, θ),

Q∑
µ=1

dµψµ(ξ, s(t, θ)))dξdθ = f(x, t),

(x, t) ∈ Ω× [0, T ].

(11)

Now, assuming that Ω has a normal non-rectangular shape as

Ω = {ξ = (σ, τ) ∈ R2 : −1 ⩽ τ ⩽ 1, v1(τ) ⩽ σ ⩽ v2(τ)}, (12)

equation (11) becomes

Q∑
µ=1

dµψµ(x, t)−
∫ 1

−1

∫ 1

−1

∫ v2(τ)

v1(τ)

t

2
K
(
x, t, σ, τ, s(t, θ),

Q∑
µ=1

dµψµ(σ, τ, s(t, θ))
)
dσdτdθ

= f(x, t).

(13)

Then converting the interval [v1(τ), v2(τ)] to the fixed interval [-1,1] by the following
linear transformation:

σ(τ, z) =
v2(τ)− v1(τ)

2
z +

v2(τ) + v1(τ)

2
,

equation (13) may be restated as:

Q∑
µ=1

dµψµ(x, t)−
∫ 1

−1

∫ 1

−1

∫ 1

−1
K1

(
x, t, σ(τ, z), τ, s(t, θ),

Q∑
µ=1

dµψµ(σ(τ, z), τ, s(t, θ))
)
dzdτdθ

= f(x, t),
(14)

where

K1(•) = t (v2(τ)−v1(τ))
4 K(•). (15)
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Then collocating (14) at points (xi, tr), i = 0, ..., N, r = 0, ...,M, we have

Q∑
µ=1

dµψµ(xi, tr)

−
∫ 1

−1

∫ 1

−1

∫ 1

−1
K1

(
xi, tr, σ(τ, z), τ, s(tr, θ),

Q∑
µ=1

dµψµ(σ(τ, z), τ, s(tr, θ))
)
dzdτdθ

= f(xi, tr).

(16)

Now using an m point Gauss-Legendre quadrature formula with the points
{θl}, {τp}, {zq} in the interval [−1, 1] and weights {wl}, {wp}, {wq} we may approximate
(16) as

Q∑
µ=1

d̂µψµ(xi, tr)−

m∑
l=1

m∑
p=1

m∑
q=1

wpwqwlK1(xi, tr, σ(τp, zq), τp, s(tr, θl),

Q∑
µ=1

d̂µψµ(σ(τp, zq), τp, s(tr, θl)))

= f(xi, tr).

(17)

Eq (17) is a nonlinear algebraic system of equations that can be solved by iteration

methods, such as Newton’s method, to determine the unknown coefficients d̂µ. So the
values of u(x, t) at any point of Ω× [0, T ] can be approximated by

ûM,N (x, t) =

Q∑
µ=1

d̂µψµ(x, t), (x, t) ∈ Ω× [0, T ].

Then we consider Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωd, where Ωi, 1 ⩽ i ⩽ d are domains of the form
(12). So we may write the final system as

Q∑
µ=1

d̂µψµ(xi, tr)

−
d∑

e=1

m∑
l=1

m∑
p=1

m∑
q=1

wpwqwlK1

(
xi, tr, σe(τp, zq), τp, s(tr, θl),

Q∑
µ=1

d̂µψµ(σe(τp, zq), τp, s(tr, θl))
)

= f(xi, tr).
(18)

where

σe(τ, z) =
v2,e(τ)− v1,e(τ)

2
z +

v2,e(τ) + v1,e(τ)

2
. (19)

and v1,e and v2,e are continuous functions on the sub-domain Ωe.
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Finally, for the case

Ω = {(σ, τ) ∈ R2 : −1 ⩽ σ ⩽ 1, v1(σ) ⩽ τ ⩽ v2(σ)}, (20)

where v1 and v2 are continuous functions of σ, the method could be used straightforward
similarly by commuting the variables.

4. Convergence analysis

In this section, an error estimate of the applied method for the smooth solutions of (1)
will be provided.

Define the approximating operator Tn on C(Ω) by

Tnu(x, t) =
mn∑
l=1

mn∑
p=1

wlwp
t

2
K(x, t, ξp, s(t, θl), u(ξp, s(t, θl))) + f(x, t), n ⩾ 1.

Following are hypotheses for the approximating operators {Tn | n ⩾ 1}[24].

• H1 : T and Tn are completely continuous nonlinear operators on C(Ω) into C(Ω).

• H2 : Tn is a collectively compact family on C(Ω) i.e., for every bounded set B ⊂ C(Ω)
the closure of the set ∪∞

n=1Tn(B) is compact in C(Ω).

• H3 :Tn is pointwise convergent to T on C(D).

• H4 : At each point of C(D), Tn is an equicontinuous family.

• H5 : T and Tn are twice Frechet differentiable on B(u0, r) = {u :∥ u− u0 ∥⩽ r, r > 0}
and ∥ T ′′

n ∥⩽ α <∞.

Now, we can represent the following theorem about the error bound for approximating
a function u ∈ Nϕ(Ω) by the inverse multiquadric radial basis function[1].

Theorem 4.1 Let ϕ(x) be a inverse multiquadric radial basis function. Suppose that
Ω ⊂ R2 be open and bounded satisfying an interior cone condition. Denote the inter-
polant of a function u ∈ Nϕ(Ω) by PM,Nu. Then for some constant c,

∥u− PM,Nu∥L∞(Ω) ⩽ e
−c

hX ,D ∥u∥Nϕ(Ω). (21)

We can rewrite Eq. (17) in the operator form

ûn = PnTnûn, (22)

In order to obtain the more accurate approximated solution we define

ũn = Tnûn, (23)

then we can write

Pnũn = ûn. (24)

So, we have

ũn = TnPnũn. (25)
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It is worth noting that if Tn satisfies H1-H5, then TnPn also satisfies H1-H5[24]. We give
the following theorem from [25] that is used to obtain the error analysis of the proposed
method.

Theorem 4.2 Assume H1-H4, and u0 be a solution of (1). Moreover assume that 1 is
not an eigenvalue of T ′(u0), where T ′(u0) denotes the Frechet derivative of T at u0. If H5
is satisfied on B(u0, r) ⊆ C(Ω), then u0 is an isolated solution of (1), of nonzero index.
Furthermore, there are ε,Λ such that for every n ⩾ Λ, TnPn has a unique fixed point ũn
in B(u0, ε). Also, there is a constant λ1 such that

∥ũn − u0∥L∞(Ω) ⩽ λ1∥T u0 − TnPnu0∥, n ⩾ Λ. (26)

The following theorem gives the convergence of the approximate solution ûn to u.

Theorem 4.3 Assume that the conditions of Theorem 4.1 and 4.2 hold, and let u0 ∈
Nϕ(Ω) be a unique solution of (2). Then there exists M, ϵ > 0 such that for every n > M
the method has a unique solution ûn ∈ B(u0, ϵ) and

∥ûn − u0∥L∞(Ω) ⩽ e
−c

hX ,Ω ∥u0∥Nϕ(Ω)(1 + λ1λ2λ3) + λ1λ3∥T u0 − Tnu0∥L∞(Ω). (27)

Proof. Using Theorem (4.2) we have

∥ũn − u0∥L∞(Ω) ⩽ λ1∥T u0 − TnPnu0∥L∞(Ω)

⩽ λ1{∥T u0 − Tnu0∥L∞(Ω) + ∥Tn(u0 − Pnu0)∥L∞(Ω)}.
(28)

By using H1, we have that Tn is uniformly bounded on C(Ω), for some large n, i.e., there
exists some λ2 > 0 such that ∥Tn∥ ⩽ λ2 <∞. So we may write

∥ũn − u0∥L∞(Ω) ⩽ λ1{∥T u0 − Tnu0∥L∞(Ω) + λ2∥u0 − Pnu0∥L∞(Ω)}. (29)

On the other hand

∥ûn − u0∥L∞(Ω) ⩽ ∥u0 − Pnu0∥L∞(Ω) + ∥Pn∥∥ũn − u0∥L∞(Ω). (30)

Combining (28) and (30) yields:

∥ûn−u0∥L∞(Ω) ⩽ ∥u0−Pnu0∥L∞(Ω)+∥Pn∥L∞(Ω){λ1{∥T u0−Tnu0∥L∞(Ω)+λ2∥u0−Pnu0∥L∞(Ω)},
(31)

Since Pn is interpolary operator, so it is bounded and we suppose ∥Pn∥ ⩽ λ3 < ∞.
Therefore, by Theorem (4.1) we have

∥ûn − u0∥L∞(Ω) ⩽ e
−c

hX ,Ω ∥u0∥Nϕ(Ω)(1 + λ1λ2λ3) + λ1λ3∥T u0 − Tnu0∥L∞(Ω). (32)

This completes the proof. ■

5. Numerical results

In this section, some examples are provided to show the strength of the proposed method
in approximating the solution of nonlinear mixed Volterra Fredholm integral equations.



298 M. Nili Ahmadabadi et al. / J. Linear. Topological. Algebra. 04(04) (2015) 289-304.

Clearly, a good choice of the radial basis function is important for the quality of the
approximation. In this paper, we utilize inverse multiquadric radial basis function with
β = 1

2 , β = 3
2 and shape parameter c = 4. Also, for the numerical quadrature rule, we

have used the 5-point Gauss-Legendre quadrature formula.To measure the accuracy of
the method, we have used the maximum absolute error:

∥e∥∞ = max|u(x, t)− û(x, t)|, (x, t) ∈ Ω× [0, T ].

All the computations were carried out using the Maple 16 software.

Example 5.1 Consider the nonlinear Mixed Volterra Fredholm integral equation

u(x, y, t)−
∫ t

0

∫
Ω
k(x, y, t, σ, τ, s, u(σ, τ, s))dσdτds = f(x, y, t),

where Ω =
{
(σ, τ) ∈ R2 : 0 ⩽ σ ⩽ π

4 , sin(σ) ⩽ τ ⩽ cos(σ)
}
and

k(x, y, t, σ, τ, s, u) = sin(x)u2.

The exact solution of this equation is u(x, y, t) = x and f(x, y, t) is defined accordingly.
The numerical results for different values of M,N and β are given in Table 2. The dis-
tribution of nodes is depicted in Figure 1. Also the maximum errors for M = 2, N = 27
and β = 0.5, 1.5 are graphically shown in Figure 2. As we expected, the numerical
results gradually converge to the exact values along with the increase of the nodes.

Table 2. Maximum absolute errors for different values of M,N and β with t = 0.5 for Example 1.

M,N β = 0.5 β = 1.5

2, 3 2.5× 10−3 5.0× 10−3

3, 7 8.0× 10−4 1.5× 10−3

3, 12 4.0× 10−6 1.0× 10−5

2, 21 2.0× 10−6 4.0× 10−6

2, 27 1.5× 10−8 6.0× 10−8
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Figure 1. Node distribution for Example 1 ( a: N = 7, b: N = 12, c: N = 21, d: N = 27).

Figure 2. The absolute errors for Example 1 ( Left:M = 2, N = 27, β = 0.5, Right:M = 2, N =
27, β = 1.5).
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Example 5.2 We consider the following nonlinear Mixed Volterra Fredholm integral
equation

u(x, y, t)−
∫ t

0

∫
Ω
x cos(x)u2(σ, τ, s)dσdτds = f(x, y, t),

which is defined on a non-rectangular domain

Ω =
{
(σ, τ) ∈ R2 : −1 ⩽ τ ⩽ 1, v1(τ) ⩽ σ ⩽ v2(τ)

}
,

where

v1(τ) =


0, − 1 ⩽ τ ⩽ 0,

−
√
τ − τ2 , 0 ⩽ τ ⩽ 1,

and

v2(τ) =
√

1− τ2.

f(x, y, t) = xt− 17

384
πx cos(x)t3.

The exact solution of this equation is u(x, y, t) = xt. The traditional methods have some
difficulties in numerical solution of this problem due to the irregularity of its domain.
But this problem could be solved using our meshless method by using some nodes
scattered over the Ω. Table 3 shows numerical results at different numbers of M,N
and β in term of ∥e∥∞. The maximum errors for M = 2, N = 25 and β = 0.5, 1.5 are
graphically shown in Figure 3. Numerical results confirm theoretical error estimates as
the number of nodes increases. The distribution of nodes is depicted in Figure 4.

Table 3. Maximum absolute errors for different values of M,N and β with t = 0.5 for Example 2.

M,N β = 0.5 β = 1.5

2, 5 5.0× 10−2 9.0× 10−2

3, 9 3.0× 10−3 7.0× 10−3

3, 19 2.5× 10−4 7.0× 10−3

2, 25 3.0× 10−4 6.0× 10−4
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Figure 3. The absolute errors for Example 2 ( Left:M = 2, N = 25, β = 0.5, Right:M = 2, N =
25, β = 1.5).

Figure 4. Node distribution for Example 2 ( A: N = 5, B: N = 9, C: N = 19, D: N = 25).
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Example 5.3 Consider the nonlinear Mixed Volterra Fredholm integral equation

u(x, y, t)−
∫ t

0

∫
Ω
k(x, y, t, σ, τ, s, u(σ, τ, s))dσdτds = f(x, y, t),

where Ω =
{
(σ, τ) ∈ R2 : 0 ⩽ σ ⩽ 1, σ2 ⩽ τ ⩽ √

σ
}
and

k(x, y, t, σ, τ, s, u) = x(1− exp(−u)),

f(x, y, t) = − ln(1 + xt) +
3

40
xt2

The exact solution of this equation is u(x, y, t) = − ln(1 + xt). The numerical results
for different values of M,N and β are given in Table 4. The distribution of nodes is
depicted in Figure 5. Moreover the absolute errors for M = 3, N = 8 and β = 0.5, 1.5
are shown in Figure 6.

Table 4. Maximum absolute errors for different values of M,N and β with t = 0.5 for Example 3.

M,N β = 0.5 β = 1.5

3, 5 3.0× 10−3 3.0× 10−3

3, 12 5.0× 10−4 6.0× 10−4

3, 18 4.0× 10−4 5.0× 10−4

3, 25 5.0× 10−4 6.0× 10−4
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Figure 5. Node distribution for Example 3 ( A: N = 5, B: N = 12, C: N = 18, D: N = 25).

Figure 6. The absolute errors for Example 3 ( Left:M = 3, N = 25, β = 0.5, Right:M = 3, N =
25, β = 1.5).

6. Conclusion

In this paper, we performed a meshless collocation method for the numerical solution
of Urysohn mixed Volterra-Fredholm integral equations of the second kind on a non-
rectangular domain. The most important novelty of this work is that the method is
meshless and does not need to any background interpolation or approximation cells. It
is shown that the proposed scheme is easy to implement, computationally attractive and
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offers a highly accurate approximate solutions.
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