Dynamical distance as a semi-metric on nuclear configuration space
Subject Areas : History and biography
1 - Faculty of Science, Department of Mathematics, Qom University,
Qom, Iran
Keywords:
Abstract :
[1] V. I. Arnold, Ordinary Differential Equations, MIT Press 1973.
[2] R. F. W. Bader, Y. Tal, S. G. Anderson, T. T. Nguyen-Dang, Theory of Molecular Structure and its Change, Isr. J. Chem. 19 (1980), 8-29.
[3] R. F. W. Bader, T. T. Nguyen-Dang, Y. Tal, S. G. Anderson, A topological theory of molecular structure, Rep. Prog. Phys. 44 (1981), 893.
[4] R. F. W. Bader, S. G. Anderson, A. J. Duke, Quantum topology of molecular charge distributions. I, J. Am. Chem. Soc. 101 (1979), 1389.
[5] R. F. W. Bader, T. T. Nguyen-Dang, Y. Tal, Quantum topology of molecular charge distributions. II. Molecular structure and its change, J. Chem. Phys. 70 (1979), 4316.
[6] R. F. W. Bader, P. J. MacDougall, C. D. H. Lau, Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity, J. Am. Chem. Soc. 106 (1984), 1594-1605.
[7] R. F. W. Bader, R. J. Gillespie, P. J. MacDougall, A physical basis for the VSEPR model of molecular geometry, J. Am. Chem. Soc. 110 (1988), 7329-7336.
[8] R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, UK 1990.
[9] H.W. Broer, F. Dumortier, S .J. van Strien, F. Takens, Structures in Dynamics Studies in Mathematical Physics, vol. 2, Elsevier Science Publishing Company, North-Holland 1991.
[10] K. Collard, G. G. Hall, Orthogonal trajectories of the electron density, Int. J. Quantum Chem. 12 (1977), 623-637.
[11] S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, 3th Edition, Prentice Hall 2003.
[12] M. W. Hirsch, S. Smale, R. L. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos, Elsevier Academic Press 2004.
[13] T. A. Keith, R. F. W. Bader, Y. Aray, Structural homeomorphism between the electron density and the virial field, Int. J. Quantum chem. 57 (1996), 183-198.
[14] H. J. Korsch, H. J. Jodi, Chaos; a program collection for the PC, Springer-Verlag 1998.
[15] P. G. Mezey, Catchment region partitioning of energy hypersurfaces, I, Theor. Chim. Acta. 58 (1981), 309-330.
[16] P. G. Mezey, Potential Energy Hyper-surfaces, Elsevier, Amsterdom 1987.
[17] P. Nasertayoob, Sh. Shahbazian, The topological analysis of electronic charge densities: A reassessment of foundations, Journal of Molecular Structure (THEOCHEM) 896 (2008), 53-58.
[18] T. T. Nguyen-Dang, R. F. W. Bader, A theory of molecular structure, Physica A. 114 (1982), 68.
[19] J. Palis, S. Smale, Proc. Symp. Pure Math. Am. Math. Soc. 14 (1970), 223.
[20] P. L. A Popelier, On the full topology of the Laplacian of the electron density, Coord. Chem. Rev. 197 (2000), 169-189.
[21] T. Poston, I. Stewart, Catastrophe Theory and its Applications, Pitman, London 1978.
[22] M. Rahimi, P. Nasertayoob, Dynamical information content of the molecular structures: A quantum theory of atoms in molecules (QTAIM) approach, MATCH Commun. Math. Comput. Chem. 67 (2012), 109-126.
[23] C. Robinson, Dynamical Systems, Stability, Symbolic Dynamics and Chaos, CRC press 1994.
[24] Y. Tal, R. F. W. Bader, T. T. Nguyen-Dang, S. G. Anderson, Quantum topology. IV. Relation between the topological and energetic stabilities of molecular structures, J. Chem. Phys. 74 (1981), 51-62.
[25] Y. Tal, R. F. Bader, J. Erkku, Structural homeomorphism between the electronic charge density and the nuclear potential of a molecular system, Phys. Rev. A. 21 (1980), 1-11.
[26] R. Thom, Structural stability and Morphogenesis, W. A. Benjamin, Reading, Massachusett 1975.