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Abstract. In this paper, we introduce the concept of dynamical distance on a nuclear con-
figuration space. We partition the nuclear configuration space into disjoint classes. This clas-
sification coincides with the classical partitioning of molecular systems via the concept of
conjugacy of dynamical systems. It gives a quantitative criterion to distinguish different
molecular structures.
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1. Introduction

Collard and Hall [10] introduced the foundations of topological analysis (abbreviated in
TA) of one-electron charge densities and its mathematical foundations was reviewed in
[2, 3, 18]. Also, TA was considered as an effective tool in modern computational chemistry
[4, 5, 24].

The mathematical framework of TA is not limited to one-electron charge densities,
since it is applied to other scaler functions, such as the nuclear potential energy field [25],
the virial field [13], and the Laplacian of charge density [6, 7, 20]. TA of the potential
energy hyper-surfaces was studied by Collard and Hall and then followed by Mezey
[15, 16].
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Within this paper, the quantum theory of atoms in molecules (QTAIM) is considered
as a method for TA. The TA of one-electron charge densities, within QTAIM is initiated
by considering the gradient system

∂ξx
∂t

(r, t) = ∇ρx(ξx(r, t))

where ∇ρx is the gradient of one-electron charge density in a nuclear configuration x.
Then one finds the critical points of ρx, i.e., the solution of the equation ∇ρx(z) = 0.
Finally, based on the spectrum of the Hessian matrix of ρx, the critical points of ρx are
classified.

Since the dynamical behaviour of the gradient system corresponding to the vector field
∇ρx is completely determined by the spectrum of the Hessian matrix of ρx, the nuclear
configuration space may be classified based on TA above.

This paper is an attempt to classify the nuclear configuration space in a quantitative
approach. More precisely, we are going to introduce a semi-metric, namely dynamical
distance, on the nuclear configuration space Ω which, some how, measures how far the
dynamical behaviour of the gradient systems given by ∇ρx and ∇ρy are. It results in a
distance on the nuclear configuration space which, exactly, gives the same classification
of nuclear configuration space, as in [17].

2. The nature of the problem

Structural stability of dynamical systems is one of the most fundamental concepts for
researchers in different areas of science [26]. In particular, it may be applied to give an ex-
plicit definition of nuclear structure. For a molecular system, there exist different nuclear
geometries x or equivalently different electron charge densities ρx where x arises from
Born-Oppenheimer approximation [8]. So, we have a correspondence x 7→ ρx between the
points of nuclear configuration space and the family of electron charge densities. So, one
may assign a gradient dynamical system ξx to any point x of the nuclear configuration
space as follows:

x 7→ charge density ρx 7→ gradient vector field ∇ρx
7→ corresponding dynamical system ξx.

(1)

Therefore, we have the following equivalence relation on nuclear configuration space:

x ∼ y ⇐⇒ the dynamical systems ξx and ξy are conjugate.

This equivalence relation classifies the nuclear configuration space into equivalence classes
[x]. Each of the equivalence classes [x] corresponds to a molecular structure. Each open
class [x] is correspondent to a structural stable class. Catastrophic properties are ap-
peared when the class [x] is not open [21]. Integration on each equivalence class results
in a type of information content of molecular structures [22].

The previous discussion gives a qualitative approach to partition the nuclear configu-
ration space and therefore, to the concept of molecular structure.

A significant question concerning these equivalence classes is: Can one give a quan-
titative approach to partition the nuclear configuration space, resulting in the same
equivalence classes?
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In this paper, we show that the answer to the previous question is affirmative. We will
extract the equivalence classes [x] by defining a semi-metric on the configuration space
Ω.

3. Mathematical prerequisities

In this section, we provide the mathematical prerequisities which we need in the pro-
ceeding of the paper. First, we discuss some primary facts on linear algebra and then we
make a short discussion on dynamical system and linearization.

3.1 Linear algebra

The linearity is a property which simplifies the study of dynamical systems. So, the
linearization of a dynamical system is an important method for tracking the dynamical
properties of a system. It leads to the study of matrices and their eigenvalues. In this
section, we present some introductory facts about matrices.

Let A be a square matrix with real arrays. Let λ be an eigenvalue of A. The multiplicity
of λ, as a root of the characteristic polynomial det(A− λI) = 0, is denoted by mλ, and
the nullity of A − λI is given by nλ := dimN(A − λI). We also write τλ for the sign of
λ, i. e.,

τλ =

−1 if λ < 0
0 if λ = 0
1 if λ > 0

A Jordan λ-block is a square matrix in one of the following forms:

[
λ
]
,

[
λ 1
0 λ

]
,

λ 1 0
0 λ 1
0 0 λ


and so on.

It is known that, every square matrix A is similar to a block diagonal matrix, consisting
entirely of such blocks, which is called the Jordan form of A. The following facts are
known: [11]

Fact 1: If λ is an eigenvalue of multiplicity mλ, then mλ must appear mλ times on
the diagonal of the Jordan form.

Fact 2: nλ = dimN(A− λI) is the number of Jordan λ-blocks.

Definition 3.1 Let A and B be two n× n matrices with real eigenvalues. Let λ1, ..., λn
and µ1, ..., µn be the eigenvalues of A and B respectively. Then A and B are said to be
equivalent if there is a permutation σ : {1, 2, ..., n} → {1, 2, ..., n} such that

mλj
= mµσ(j)

, nλj
= nµσ(j)

, τλj
= τµσ(j)

for all j ∈ {1, 2, ..., n}.

Clearly, any two similar matrices are equivalent.
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3.2 Dynamical systems

In section 4 we use some general techniques of dynamical systems to classify the nuclear
configuration space. we discuss the minimum material which is needed in the sequel.

3.2.1 The general theory

In this part, we recall the minimum necessary facts of the theory of dynamical systems
for TA. Since our discussion is limited to R3, we only consider dynamical systems on R3,
however, more general discussions may be found in the classical contexts [1, 9, 19, 23].

Consider a system of ordinary differential equations

dx

dt
= F (x) (2)

where x : R → R3 and F : R3 → R3 are smooth functions. The solution of the system
of differential equations (2) results in the flow ϕ : R3 × R → R3 satisfying the following
conditions:

∂ϕ

∂t
(x, t) = F (ϕ(x, t)), ϕ(x, 0) = 0, ϕ(x, t+ s) = ϕ(ϕ(x, t), s) (3)

for all x ∈ R3 and t, s ∈ R.
Two dynamical systems ϕ, ψ : R3 × R → R3 are said to be conjugate, if there is a

diffeomorphism (A differentiable map with differentiable inverse) h : R3 → R3 such that

h(ϕ(x, s)) = ψ(h(x), s)

for all x ∈ R3 and t ∈ R. Indeed, two conjugate dynamical systems have the same
dynamical behaviour.

Based on the concept of conjugacy, it is possible to define an equivalence relation on a
family of dynamical systems. It classifies the family of dynamical systems into equivalence
classes. It results in a mathematical definition of structural stability and instability for
a dynamical system.

3.2.2 Linear systems and linearization

Suppose that A is a 3× 3 matrix. If we set F (X) = Ax, in equation (2), then we get
a linear system of differential equations

dx

dt
= Ax. (4)

If J is the Jordan form of A then the dynamical system associated to (4) is conjugate to
the linear system given by

dx

dt
= Jx. (5)

So, the dynamics of the solution of (5), and therefore (4), is completely determined by
the eigenvalues of A.

Consider the system

dx

dt
= F (x)
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and suppose that F (x0) = 0. Let DFx0
denotes the Jaccobian matrix of F evaluated at

x0. then the linear system of differential equations

dy

dt
= DFx0

y (6)

is called the linearalized system near x0. Note that, if x0 = 0, the linearalized system is
obtained by simply dropping all of the nonlinear terms in F .

If x0 is an equilibrium point of a linear system (4), then the behaviour of the dynamical
system corresponding to (4), in a neighbourhood of x0 is completely determined by the
eigenvalues of A in (4), i.e., by the number of the eigenvalues, their multiplicity and their
sign.

The following theorem states that solutions of nonlinear systems near equilibrium
points resemble those of their linear parts only in the case where the linearized system is
hyperbolic; that is, when neither of the eigenvalues of the system has zero real part [12].

Theorem 3.2 (The Linearization Theorem) Suppose the n-dimensional nonlinear sys-
tem dx

dt = F (x) has an equilibrium point at x0 that is hyperbolic. Then the nonlinear
flow is conjugate to the flow of the linearized system in a neighborhood of x0.

Applying Theorem 3.2 and considering the fact that, the dynamical behaviour of any
linear system such as (4) is completely determined by eigenvalues of A, two nonlinear
systems dx

dt = F (x) and dx
dt = G(x), with hyperbolic equilibrium points, are conjugate

if there is a correspondence x0 7→ x∗0 between their equilibrium points such that the
linearalized systems dx

dt = DFx0
x and dx

dt = DGx∗
0
x have similar behaviour, in the sense

that, DFx0
and DGx∗

0
are two equivalent matrices.

The following theorem is useful since we work with gradient systems [12].

Theorem 3.3 Let f : R3 → R be a smooth scaler field. For a gradient system
dx
dt = ∇f(x), the linearized system at any equilibrium point has only real eigenvalues.

Note that, positive eigenvalues lead to the unstable manifolds and the negative eigen-
values lead to the stable manifolds [14, 21].

4. Dynamical distance

Suppose that M is a molecule and x the corresponding nuclear configuration (molecule
geometry). Then the wave function of this molecule is denoted by Ψ = Ψ(r;x), where
r stands for the collection of electronic variables and x is to emphasize the parametric
dependence of the wave function to the nuclear coordinates. Therefore, the one-electron
charge density ρx, and so, the corresponding gradient vector field ∇ρx are also dependent
parametrically on the nuclear configuration x. Bader and coworkers [3, 10] introduced
the differential equation

dr(s)

ds
= ∇ρx(r(s)) (7)

which results in the dynamical system ξx : R3 × R → R3 satisfying

ξx(r, 0) = r,
∂ξx
∂t

(r, t) = ∇ρx(ξx(r, t)) (8)
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for all r ∈ R3. Since for any point in the nuclear configuration space, there is a cer-
tain dynamical system, the equivalence relation ”∼” could be defined on the nuclear
configuration space:

x ∼ y ⇐⇒ the dynamical systems ξx and ξy are conjugate.

Thus, the nuclear configuration space is classified into equivalence classes. Each equiva-
lence class is denoted by [x]. The previous approach results in the definition of a molecular
structure, stability and instability of molecular structures [3, 10].

In this section, we are going to define a map j : Ω × Ω → [0,∞) which generates the
previous equivalence classes in a quantitative approach.

Note that, the equilibrium points of the dynamical system given by (8) (points P
where ∇ρx(P ) = 0) are divided into two parts:

Firstly, the points P which the Hessian matrix H = ∇∇Tρx is invertible, i.e.,
detH(P ) ̸= 0. The critical points in this case are called non-degenerate, and the Hessian
matrix H(P ) = ∇∇Tρx(P ) is a hyperbolic matrix.

Secondly, the Hessian matrix H(P ) = ∇∇Tρx(P ) is not invertible, i.e., detH(P ) = 0.
In this case, the Hessian matrixH(P ) = ∇∇Tρx(P ) possesses at least one null eigenvalue.
The critical points, in this case, are called degenerate.

We assume that M is a molecule with nuclear configurations so that all (a finite
number) the critical points are non-degenerate. Note that, other cases, with infinite
number of critical points, are very special and extremely rare [3].

Suppose that x and y are two nuclear configurations, and ρx and ρy are the corre-
sponding one-electron charge densities. Let P ∈ ∇ρ−1

x ({0}) and Q ∈ ∇ρ−1
y ({0}). Let also

∇∇Tρx(P ) and ∇∇Tρy(Q) be the Hessian matrices corresponding to ρx and ρy, evalu-
ated at P and Q respectively. Let λ1(P ), λ2(P ), λ3(P ) be the eigenvalues of ∇∇Tρx(P )
and µ1(Q), µ2(Q), µ3(Q) be the eigenvalues of ∇∇Tρy(Q). Note that, by Theorem 3.3,
λj(P ) and µj(Q) (j = 1, 2, 3) are real numbers. The local dynamical distance of x and y
at P and Q is defined as follows:

α(x,y)(P,Q) := min
σ∈S3

{
3∑

i=1

|mλi(P ) −mµσ(i)(Q)|+
3∑

i=1

|nλi(P ) − nµσ(i)(Q)|+
3∑

i=1

|τλi(P ) − τµσ(i)(Q)|

}

where Sn is the collection of all permutations on n. Now, suppose that

∇ρ−1
x ({0}) = {P1, P2, ..., Plx}

and

∇ρ−1
y ({0}) = {Q1, Q2, ..., Qly}.

The dynamical distance of x and y is defined as follows:

j(x, y) :=

{
minδ∈Sl

{∑l
j=1 α(x,y)(Pj , Qδ(j))

}
if lx = ly = l

|lx − ly| if lx ̸= ly

Briefly, we have defined a map j : Ω× Ω → [0,∞) which assigns a non-negative integer
to any two nuclear configurations. It, some how, measures how far are the dynamics
generated by two nuclear configurations.
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One may easily check the following properties:

(1) j(x, x) = 0 for all x ∈ Ω.
(2) j(x, y) = j(y, x) for all x, y ∈ Ω.
(3) j(x, z) ⩽ j(x, y) + j(y, z) for all x, y, z ∈ Ω.

So, the dynamical distance j : Ω × Ω → [0,∞) is indeed a semi-metric on the nuclear
configuration space. However, the following theorem states that j is not a metric, but it
partitions the nuclear configuration space just the same as [17].

Theorem 4.1 For any two nuclear configurations x and y we have

j(x, y) = 0 if and only if [x] = [y].

Proof. Suppose that [x] = [y]. Thus, the dynamical systems ξx and ξy are conjugate. In
particular, lx = ly = l. Let {P1, P2, ..., Pl} and {Q1, Q2, ..., Ql} be the critical points of
∇ρx and ∇ρy respectively. For i ∈ {1, 2, ..., l}, the nonlinear system

∂ξx
∂t

(r, t) = ∇ρx(ξx(r, t)) (9)

is conjugate to the linear system

∂ξx
∂t

(r, t) = ∇∇Tρx(Pi)ξx(r, t) (10)

near the equilibrium point Pi. Similarly, the nonlinear system

∂ξy
∂t

(r, t) = ∇ρy(ξy(r, t)) (11)

is conjugate to the linear system

∂ξy
∂t

(r, t) = ∇∇Tρy(Qi)ξy(r, t) (12)

near the equilibrium point Qi. So, there is a permutation δ ∈ Sl such that for any
i ∈ {1, 2, ..., l} the linear systems corresponding to the Hessian matrices ∇∇Tρx(Pi) and
∇∇Tρy(Qδ(i)) are conjugate. Since the dynamic of any linear system is completely deter-

mined by the eigenvalues of its coefficient matrix then the Hessian matrices ∇∇Tρx(Pi)
and ∇∇Tρy(Qδi) are equivalent. So, there is a permutation σ ∈ S3 such that

mλj(Pi) = mµσ(j)(Qδ(i)), nλj(Pi) = nµσ(j)(Qδ(i)), τλj(Pi) = τµσ(j)(Qδ(i))

for all j ∈ {1, 2, 3}. Therefore, α(x,y)(Pi, Qδ(i)) = 0 for all i ∈ {1, 2, ..., l}. This easily
results in j(x, y) = 0.

Conversely, let j(x, y) = 0. By the definition of j, lx = ly = l and

min
δ∈Sl


l∑

j=1

α(x,y)(Pj , Qδ(j))

 = 0.
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Hence, there is a permutation δ ∈ Sl such that

l∑
j=1

α(x,y)(Pj , Qδ(j)) = 0,

so α(x,y)(Pj , Qδ(j)) = 0 for all j ∈ {1, 2, ..., l}. Consequently, for any j ∈ {1, 2, ..., l} there
exists a permutation σ ∈ S3 such that

mλi(Pj) = mµσ(i)(Qδ(j)), nλi(Pj) = nµσ(i)(Qδ(j)), τλi(Pj) = τµσ(i)(Qδ(j)).

Therefore ∇∇Tρx(Pj) and ∇∇Tρy(Qδ(j)) are equivalent matrices, for all j ∈ {1, 2, ..., l}.
So, the corresponding linear systems are conjugate. By Theorem 3.2 the linear system

∂ξx
∂t

(r, t) = ∇∇Tρx(Pj)ξx(r, t) (13)

is conjugate to the nonlinear system (9) near the equilibrium point Pj (j ∈ {1, 2, ..., l}).
Similarly, the linear system

∂ξy
∂t

(r, t) = ∇∇Tρy(Qδ(j))ξy(r, t) (14)

is conjugate to the nonlinear system (11) near the equilibrium point Qδ(j) where, j ∈
{1, 2, ..., l}. Consequently, the systems ξx and ξy are conjugate, therefore [x] = [y]. ■

5. Summary and discussion

In this paper, we introduced the concept of dynamical distance on nuclear configuration
space. It is a semi-metric which defines a distance between any two nuclear configura-
tions. The distance between two nuclear configurations x and y is zero if and only if the
corresponding dynamical systems ξx and ξy have the same dynamical behaviour. In other
words, the distance between two nuclear configurations is zero if and only if they have the
same molecular structure. In this account, one may partition the nuclear configuration
space Ω by defining the following equivalence relation:

x ∼∗ y if and only if j(x, y) = 0.

If we denote the equivalence class of x by [x]∗ then Theorem 4.1 states that [x] = [x]∗
where [x] is the equivalence class given by the equivalence relation [17]

x ∼ y ⇐⇒ the dynamical systems ξx and ξy are conjugate.

This results in a quantitative approach to partition the nuclear configuration space.
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