The effect of silybin-encapsulated micelle nanoparticles on mexY expression in ciprofloxacin-resistant isolates of Pseudomonas aeruginosa
Subject Areas : Molecular MicrobiologyZahra Ahmadi Roudbaraki 1 , Najmeh Ranji 2 , Aref Mohammadipour 3 , Zahra Ghasemnegad 4
1 - کارشناس ارشد، گروه زیست شناسی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت
2 - استادیار، ژنتیک مولکولی، گروه زیست شناسی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت
3 - کارشناس ارشد، گروه زیست شناسی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت
4 - کارشناس ارشد، گروه زیست شناسی، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت
Keywords: nanoparticles, Pseudomonas aeruginosa, Ciprofloxacin, Silybin, mexY gene,
Abstract :
Background & Objectives: Pseudomonas aeruginosa is a major nosocomial infection in immunocompromised patients. Silybin as an herbal drug has anti-inflammatory and anti-cancer effects and recently further studies have been focused on its antibacterial functions. The aim of this study was to investigate the antibacterial effect of silybin on mexY gene expression in ciprofloxacin (CP)-resistant isolates of P. aeruginosa.Materials & Methods: In this study, six ciprofloxacin- resistant isolates of P. aeruginosa were both treated by ciprofloxacin (1/2 MIC) only as a control sample and in combination with silybin-encapsulated micelles (nanoparticles) as the test sample. MBC test was performed 24 h after culturein Mueller-Hinton agar. After RNA extraction and cDNA synthesis, mexY expression was quantitatively investigated in silybin- treated and untreated cells.Results: Our findings showed that a combined silybin-encapsulated micelles and ciprofloxacin (1/2 MIC) treatment reduces the bacterial growth up to 50% after 24h. Also Q-RT-PCR analysis revealed that silybin-encapsulated micelles decrease mexY expression.Conclusion: Our results suggest that silybin could inhibit bacterial growth by decreasing mexXY-oprM efflux pump count on the cell surface.
tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance
Program (1997-2007). Diagn Microbiol Infect Dis. 2009; 65(3): 331-334.
2. Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J
Antimicrob Chemother. 2003; 51(1): 9-11.
3. Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas
aeruginosa. Front Microbiol. 2012; 3: 408.
4. Ranji N, Rahbar Takrami S. Role of mexZ gene in ciprofloxacin resistance in Pseudomonas
aeruginosa isolates in Guilan province. J Urmia Univ Med Sci. 2017; 27(10): 902-913.
5. Hocquet D, Berthelot P, Roussel-Delvallez M, Favre R, Jeannot K, Bajolet O, Bajolet O, Marty
N, Grattard F, Mariani-Kurkdjian P, Bingen E, Husson M.O, Couetdic G, Plésiat P.
Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its
ability to cause bloodstream infections. Antimicrob Agents Chemother. 2007; 51(10): 3531-3536.
6. Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative
bacteria. Curr Pharm Biotechnol. 2002; 3(2): 77-98.
7. Ting H, Deep G, Agarwal R. Molecular mechanisms of silibinin-mediated cancer
chemoprevention with major emphasis on prostate cancer. AAPS J. 2013; 15(3): 707-716.
8. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin:
from bench to bed side. Anticancer Res. 2006; 26(6B): 4457-4498.
9. Lee YS, Jang KA, Cha JD. Synergistic antibacterial effect between silibinin and antibiotics in
oral bacteria. J Biomed Biotechnol. 2012; 618081.
10. Jung HJ, Lee DG. Synergistic antibacterial effect between silybin and N, N'- dicyclohexyl
carbodiimide in clinical Pseudomonas aeruginosa isolates. J Microbiol. 2008; 46(4): 462-467.
11. Lee DG, Kim HK, Park Y, Park SC, Woo ER, Jeong HG, Hahm KS. Gram-positive bacteria
specific properties of silybin derived from Silybum marianum. Arch Pharm Res. 2003; 26(8):
597-600.
12. Ebert B, Seidel A, Lampen A. Phytochemicals induce breast cancer resistance protein in
Caco-2 cells and enhance the transport of benzo[a]pyrene-3-sulfate. Toxicol Sci. 2007; 96(2):
227-236.
13. Tan JM, Karthivashan G, Gani SA, Fakurazi S, Hussein MZ. In vitro drug release characteristic
and cytotoxic activity of silibinin-loaded single walled carbon nanotubes functionalized with
biocompatible polymers. Chem Cent J. 2016; 10: 81.
14. Dubois V, Arpin C, Melon M, Melon B, Andre C, Frigo C, Quentin C. Nosocomial outbreak
due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin
therapy and analysis of beta-lactam resistance. J Clin Microbiol. 2001; 39(6): 2072-2078.
15. Cockerill F, Patel J, Alder J, Bradford P, Dudley M, Eliopoulos G, Hardy D, Heght D, Hindler
J, Powell M, Swenson J, Thomson R, Traczewskey M, Turnidge J, Weinstein M, Zimmer B.
Performance standards for antimicrobial susceptibility testing: twenty-third informational
supplement; M100-S23: Clinical & Laboratory Standards Institute; 2013.
16. Lomholt JA, Kilian M. Ciprofloxacin susceptibility of Pseudomonas aeruginosa isolates from
keratitis. Br J Ophthalmol. 2003; 87(10): 1238-1240.
17. Tahmasebi Birgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi
F, Babaei E. Dendrosomal curcumin nanoformulation down-regulates pluripotency genes via
miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine. 2014; 9: 403-417.
18. Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of
uropathogens by curcumin- an anti-quorum sensing agent from Curcuma longa. Food Chem.
2014; 148: 453-460.
19. Yoneda K, Chikumi H, Murata T, Gotoh N, Yamamoto H, Fujiwara H, Nishino T, Shimizu
E.. Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time
polymerase chain reaction. FEMS Microbiol Lett. 2005; 243(1): 125-131.
20. Tahmasebi Birgani M, Erfani-Moghadam V, Babaei E, Najafi F, Zamani M, Shariati M,
Nazem Sh, Farhangi B, Motahari P,Sadeghizadeh M. Dendrosomal nano-curcumin; The novel
formulation to improve the anticancer properties of curcumin. P Bio Sci. 2015; 5(2): 143-158.
21. Livermore DM, British Society for Antimicrobial Chemotherapy Working Party on The
Urgent Need: Regenerating Antibacterial Drug D, Development. Discovery research: the
scientific challenge of finding new antibiotics. J Antimicrob Chemother. 2011; 66(9):
1941-1944.
22. Moskowitz SM, Ernst RK. The role of Pseudomonas lipopolysaccharide in cystic fibrosis
airway infection. Subcell Biochem. 2010; 53: 241-253.
23. Ranjbar R, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M, Farshad Sh,
Arjomandzadegan M. Characterization of Pseudomonas aeruginosa strains isolated from burned
patients hospitalized in a major burn center in Tehran, Iran. Acta Med Iran. 2011; 49(10):
675-679.
24. Fazeli N, Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas
aeruginosa isolated from Iranian hospital infections. Iran Red Crescent Med J. 2014; 16(10):
e15722.
25. Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosa strains producing metallo beta
lactamases from infections in burned patients and identification of blaIMP and blaVIM genes by
PCR. Iran J Med Microbiol. 2007; 1(1): 23-31.
26. Geyik MF, Aldemir M, Hosoglu S, Tacyildiz HI. Epidemiology of burn unit infections in
children. Am J Infect Control. 2003; 31(6): 342-346.
27. Negi N, Prakash P, Gupta ML, Mohapatra TM. Possible role of curcumin as an efflux pump
inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Clin Diagn Res.
2014; 8(10): DC04-7.
28. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho
D, Chamberland S, Renau T, Leger R, Hecker S, Watkins W, Hoshino K, Ishida H, Lee VJ.
Identification and characterization of inhibitors of multidrug resistance efflux pumps in
Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother.
2001; 45(1)
_||_
tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance
Program (1997-2007). Diagn Microbiol Infect Dis. 2009; 65(3): 331-334.
2. Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J
Antimicrob Chemother. 2003; 51(1): 9-11.
3. Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas
aeruginosa. Front Microbiol. 2012; 3: 408.
4. Ranji N, Rahbar Takrami S. Role of mexZ gene in ciprofloxacin resistance in Pseudomonas
aeruginosa isolates in Guilan province. J Urmia Univ Med Sci. 2017; 27(10): 902-913.
5. Hocquet D, Berthelot P, Roussel-Delvallez M, Favre R, Jeannot K, Bajolet O, Bajolet O, Marty
N, Grattard F, Mariani-Kurkdjian P, Bingen E, Husson M.O, Couetdic G, Plésiat P.
Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its
ability to cause bloodstream infections. Antimicrob Agents Chemother. 2007; 51(10): 3531-3536.
6. Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative
bacteria. Curr Pharm Biotechnol. 2002; 3(2): 77-98.
7. Ting H, Deep G, Agarwal R. Molecular mechanisms of silibinin-mediated cancer
chemoprevention with major emphasis on prostate cancer. AAPS J. 2013; 15(3): 707-716.
8. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin:
from bench to bed side. Anticancer Res. 2006; 26(6B): 4457-4498.
9. Lee YS, Jang KA, Cha JD. Synergistic antibacterial effect between silibinin and antibiotics in
oral bacteria. J Biomed Biotechnol. 2012; 618081.
10. Jung HJ, Lee DG. Synergistic antibacterial effect between silybin and N, N'- dicyclohexyl
carbodiimide in clinical Pseudomonas aeruginosa isolates. J Microbiol. 2008; 46(4): 462-467.
11. Lee DG, Kim HK, Park Y, Park SC, Woo ER, Jeong HG, Hahm KS. Gram-positive bacteria
specific properties of silybin derived from Silybum marianum. Arch Pharm Res. 2003; 26(8):
597-600.
12. Ebert B, Seidel A, Lampen A. Phytochemicals induce breast cancer resistance protein in
Caco-2 cells and enhance the transport of benzo[a]pyrene-3-sulfate. Toxicol Sci. 2007; 96(2):
227-236.
13. Tan JM, Karthivashan G, Gani SA, Fakurazi S, Hussein MZ. In vitro drug release characteristic
and cytotoxic activity of silibinin-loaded single walled carbon nanotubes functionalized with
biocompatible polymers. Chem Cent J. 2016; 10: 81.
14. Dubois V, Arpin C, Melon M, Melon B, Andre C, Frigo C, Quentin C. Nosocomial outbreak
due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin
therapy and analysis of beta-lactam resistance. J Clin Microbiol. 2001; 39(6): 2072-2078.
15. Cockerill F, Patel J, Alder J, Bradford P, Dudley M, Eliopoulos G, Hardy D, Heght D, Hindler
J, Powell M, Swenson J, Thomson R, Traczewskey M, Turnidge J, Weinstein M, Zimmer B.
Performance standards for antimicrobial susceptibility testing: twenty-third informational
supplement; M100-S23: Clinical & Laboratory Standards Institute; 2013.
16. Lomholt JA, Kilian M. Ciprofloxacin susceptibility of Pseudomonas aeruginosa isolates from
keratitis. Br J Ophthalmol. 2003; 87(10): 1238-1240.
17. Tahmasebi Birgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi
F, Babaei E. Dendrosomal curcumin nanoformulation down-regulates pluripotency genes via
miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine. 2014; 9: 403-417.
18. Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of
uropathogens by curcumin- an anti-quorum sensing agent from Curcuma longa. Food Chem.
2014; 148: 453-460.
19. Yoneda K, Chikumi H, Murata T, Gotoh N, Yamamoto H, Fujiwara H, Nishino T, Shimizu
E.. Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time
polymerase chain reaction. FEMS Microbiol Lett. 2005; 243(1): 125-131.
20. Tahmasebi Birgani M, Erfani-Moghadam V, Babaei E, Najafi F, Zamani M, Shariati M,
Nazem Sh, Farhangi B, Motahari P,Sadeghizadeh M. Dendrosomal nano-curcumin; The novel
formulation to improve the anticancer properties of curcumin. P Bio Sci. 2015; 5(2): 143-158.
21. Livermore DM, British Society for Antimicrobial Chemotherapy Working Party on The
Urgent Need: Regenerating Antibacterial Drug D, Development. Discovery research: the
scientific challenge of finding new antibiotics. J Antimicrob Chemother. 2011; 66(9):
1941-1944.
22. Moskowitz SM, Ernst RK. The role of Pseudomonas lipopolysaccharide in cystic fibrosis
airway infection. Subcell Biochem. 2010; 53: 241-253.
23. Ranjbar R, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M, Farshad Sh,
Arjomandzadegan M. Characterization of Pseudomonas aeruginosa strains isolated from burned
patients hospitalized in a major burn center in Tehran, Iran. Acta Med Iran. 2011; 49(10):
675-679.
24. Fazeli N, Momtaz H. Virulence gene profiles of multidrug-resistant Pseudomonas
aeruginosa isolated from Iranian hospital infections. Iran Red Crescent Med J. 2014; 16(10):
e15722.
25. Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosa strains producing metallo beta
lactamases from infections in burned patients and identification of blaIMP and blaVIM genes by
PCR. Iran J Med Microbiol. 2007; 1(1): 23-31.
26. Geyik MF, Aldemir M, Hosoglu S, Tacyildiz HI. Epidemiology of burn unit infections in
children. Am J Infect Control. 2003; 31(6): 342-346.
27. Negi N, Prakash P, Gupta ML, Mohapatra TM. Possible role of curcumin as an efflux pump
inhibitor in multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Clin Diagn Res.
2014; 8(10): DC04-7.
28. Lomovskaya O, Warren MS, Lee A, Galazzo J, Fronko R, Lee M, Blais J, Cho
D, Chamberland S, Renau T, Leger R, Hecker S, Watkins W, Hoshino K, Ishida H, Lee VJ.
Identification and characterization of inhibitors of multidrug resistance efflux pumps in
Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother.
2001; 45(1)