Parameters Screening for Molybdenum Recovery from Spent Catalyst of MoS2 Nanoparticles in the Heavy Oil Upgrading Process
Subject Areas :Maryam Safaei 1 , seyed kamal Masoudian Targhi 2 , Zahra Khodadadi 3
1 - Associate Professor, Institute of Petroleum Industry
2 - Project Manager
3 - Islamic Azad University, South Tehran Branch
Keywords: Experimental design, recovery, Homogeneous catalyst, Nano molybdenum sulfide, Half-Normal ,
Abstract :
The necessiting for oil refining productivity has increased due to environmental constraints. Molybdenum sulfide as main catalyst plays a key role in the process of upgrading heavy oil. Therefore, recovery of this metal is very important due to the reduction of molybdenum ore resources and also the high consumption of these types of catalysts. In this study, molybdenum is recovered from a spent homogeneous nanocatalyst in the hydrocarbon process from heavy hydrocarbon feed. Platelet-Borman design method was used to determine the effective parameters in molybdenum recovery. Seven quantitative and qualitative parameters including leaching and oxidation temperatures, leaching and oxidation times, type of leaching material, sodium carbonate, and ammonium carbonate concentrations were selected. To estimate the relative importance of each parameter, two methods of Pareto charts and half-normal plots were used. Pareto charts showed that the type of leaching material, sodium carbonate concentration, and oxidation temperature affect the efficiency. The deviations in the half-normal chart also confirm the results in the Pareto chart. Accordingly, in the oxidation step with hydrogen peroxide, 25 °C and time of 60 min and in the leaching step, sodium carbonate as a leaching material with a concentration of 90 wt.%, 25 ºC, and time of 60 min can be selected for optimal conditions.
[1] Yi, M.; Zhang C.; RSC Adv. 8, 9564-9573, 2018.
[2] Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z.; Chem. Rev. 118, 6337-6408, 2018.
[3] Paolella, A.; Laul, D.; Timoshevskii, V.; Zen, W.; Marras, S.; Bertoni, G.; Wahba, A.S.; Girard, G.; Gagnon, C.; Rodrigue, L.; Commarieu, B.; Guerfi, A.; Gauvin, R.; Trudeau, M.L.; Vijh, A.; Armand, M.; Zaghib, K.; J. Phys. Chem. C. 122, 1014-1023, 2018.
[4] Ganatra, R.; Zhang, Q.; ACS Nano 8, 4961-4967, 2014.
[5] Afanasiev, P.; C.R. Chimie 11, 159-182, 2008.
[6] Dubois, M.R.; Chem. Rev. 89, 1-9, 1989.
[7] Zhou, W.; Zhou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.-C.; Nano Lett. 13, 2615-2622, 2013.
[8] Chianelli, R.R.; Berhault, G.; Torres, B.; Catal. Today 147, 275-286, 2009.
[9] Angeles, M.J.; Leyva, C.; Ancheyta, J.; Ramirez, S.; Catal. Today 220-222, 274-294, 2014.
[10] Sahu, R.; Song, B.J.; Im, J.S.; Jeon, Y.P.; Lee, C.W.; J. Ind. Eng. Chem. 27, 12-24, 2015.
[11] Stormont, D.H.; Oil Gas J. 66, 104-109, 1968.
[12] Bellussi, G.; Rispoli, G.; Landoni, A.; Millini, R.; Molinari, D.; Montnanri, E.; Moscotti, D.; Pollesel, P.; Catal. J. 308, 189-200, 2013.
[13] Liu, Y.; Gao, L.; Wen, L.; Zong, B.; Recent Patents Chem. Eng. 2, 22-36, 2009.
[14] Ramirez-Corredores, M.M.; “The Science and Technology of Unconventional Oils: Finding Refining Opportunities”, 1st Edition, Academic Press, Massachusetts, 2017.
[15] Prajapati, R.; Kohli, K.; Maity, S.K.; Energy Fuels 31, 3905-3912, 2017.
[16] Khadzhiev, S.N.; Kadiev, K.M.; Mezhidov, V.K.; Zarkesh, J.; Hashemi, R.; Masoudian Targhi, S.K.; US Patent 7585406 B2, 2009.
[17] Kim, B.S.; Jha, M.K.; Jeong, J.; Lee, J.C.; Int. J. Miner. Process 88, 7–12, 2008.
[18] Aydin, I.; Aydin, F.; Hamamci, C.; Fuel 95, 481–485, 2012.
[19] Rezki1, A.S., Sumardi, S., Astuti, W.; Bendiyasa, I.M.; Petrus, H.T.B.M.; International Conference on Science, Infrastructure Technology and Regional Development 23-25 October, South Lampung, Indonesia, 2020 in: IOP Conf. Series: Earth Environ. Sci. 830, 1-10, 2021.
[20] Asghari, I.; Mousavi, S.M.; Amiri, F.; Tavassoli, S.; J. Ind. Eng. Chem. 19, 1069–1081, 2013.
[21] Sosnin, G.A.; Yazykov, N.A.; Yeletsky, P.M.; Zaikina, O.O.; Yakovlev, V.A.; Fuel Process. Technol. 208, 106520-9, 2020.
[22] Sutama, D.K.; Prasetya, A.; Petrus, H.T.B.M.; International Conference on Science, Infrastructure Technology and Regional Development 23-25 October, South Lampung, Indonesia, 2020 in: IOP Conf. Series: Earth Environ. Sci. 882, 1-6, 2021.
[23] Barik, S.P.; Park, K.H.; Parhi, P.K.; Kim, D.J.; Nam, C.W.; Separ. Sci. Technol. 49, 647-655, 2014.
[24] Bharadwaj, A.; Ting, Y.P.; Bioresour. Technol. 130, 673–680, 2013.
[25] Habashi, F.; “Handbook of extractive metallurgy”, Wiley VCH Company, USA, 1997.
[26] Montgomery, D.C.; “Design and Analysis of Experiments”, John Wiley and Sons, New York, 1991.
[27] Barrentine, L.B.; “An Introduction to Design of Experiments: A Simplified Approach”, ASQ Quality Press, USA, 367-376, 1999.
[28] Marafi, M.; Stanislaus A., Resour. Conserv. Recy. 53, 1-26, 2008.
[29] Akcil, A.; Veglio, F.; Ferella, F.; Okudan, M.D.; Tuncuk, A.; Waste Mmanage. 45, 420-433, 2015.
[30] Rene, E.R.; Sahinkaya, E.; Lewis A.; Lens, P.N.L.; “Sustainable Heavy Metal Remediation”, 1st Edition, Springer, Switzerland, 2017.
[31] Daniel, C.; Technometrics 1, 311-341, 1959.
[32] Mee, R.J.; Quat. Technol., 47, 107-109, 2015.
[33] Park, K.H. Mohapatra, D.; Reddy, B.R.; Nam, C.W.; Int. J. Miner. Process 80, 261–5, 2006.
[34] Park, K.H.; Mohapatra, D.; Reddy, B.R.; J. Hazard. Mater. B 138, 311–6, 2006.
_||_[1] Yi, M.; Zhang C.; RSC Adv. 8, 9564-9573, 2018.
[2] Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z.; Chem. Rev. 118, 6337-6408, 2018.
[3] Paolella, A.; Laul, D.; Timoshevskii, V.; Zen, W.; Marras, S.; Bertoni, G.; Wahba, A.S.; Girard, G.; Gagnon, C.; Rodrigue, L.; Commarieu, B.; Guerfi, A.; Gauvin, R.; Trudeau, M.L.; Vijh, A.; Armand, M.; Zaghib, K.; J. Phys. Chem. C. 122, 1014-1023, 2018.
[4] Ganatra, R.; Zhang, Q.; ACS Nano 8, 4961-4967, 2014.
[5] Afanasiev, P.; C.R. Chimie 11, 159-182, 2008.
[6] Dubois, M.R.; Chem. Rev. 89, 1-9, 1989.
[7] Zhou, W.; Zhou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.-C.; Nano Lett. 13, 2615-2622, 2013.
[8] Chianelli, R.R.; Berhault, G.; Torres, B.; Catal. Today 147, 275-286, 2009.
[9] Angeles, M.J.; Leyva, C.; Ancheyta, J.; Ramirez, S.; Catal. Today 220-222, 274-294, 2014.
[10] Sahu, R.; Song, B.J.; Im, J.S.; Jeon, Y.P.; Lee, C.W.; J. Ind. Eng. Chem. 27, 12-24, 2015.
[11] Stormont, D.H.; Oil Gas J. 66, 104-109, 1968.
[12] Bellussi, G.; Rispoli, G.; Landoni, A.; Millini, R.; Molinari, D.; Montnanri, E.; Moscotti, D.; Pollesel, P.; Catal. J. 308, 189-200, 2013.
[13] Liu, Y.; Gao, L.; Wen, L.; Zong, B.; Recent Patents Chem. Eng. 2, 22-36, 2009.
[14] Ramirez-Corredores, M.M.; “The Science and Technology of Unconventional Oils: Finding Refining Opportunities”, 1st Edition, Academic Press, Massachusetts, 2017.
[15] Prajapati, R.; Kohli, K.; Maity, S.K.; Energy Fuels 31, 3905-3912, 2017.
[16] Khadzhiev, S.N.; Kadiev, K.M.; Mezhidov, V.K.; Zarkesh, J.; Hashemi, R.; Masoudian Targhi, S.K.; US Patent 7585406 B2, 2009.
[17] Kim, B.S.; Jha, M.K.; Jeong, J.; Lee, J.C.; Int. J. Miner. Process 88, 7–12, 2008.
[18] Aydin, I.; Aydin, F.; Hamamci, C.; Fuel 95, 481–485, 2012.
[19] Rezki1, A.S., Sumardi, S., Astuti, W.; Bendiyasa, I.M.; Petrus, H.T.B.M.; International Conference on Science, Infrastructure Technology and Regional Development 23-25 October, South Lampung, Indonesia, 2020 in: IOP Conf. Series: Earth Environ. Sci. 830, 1-10, 2021.
[20] Asghari, I.; Mousavi, S.M.; Amiri, F.; Tavassoli, S.; J. Ind. Eng. Chem. 19, 1069–1081, 2013.
[21] Sosnin, G.A.; Yazykov, N.A.; Yeletsky, P.M.; Zaikina, O.O.; Yakovlev, V.A.; Fuel Process. Technol. 208, 106520-9, 2020.
[22] Sutama, D.K.; Prasetya, A.; Petrus, H.T.B.M.; International Conference on Science, Infrastructure Technology and Regional Development 23-25 October, South Lampung, Indonesia, 2020 in: IOP Conf. Series: Earth Environ. Sci. 882, 1-6, 2021.
[23] Barik, S.P.; Park, K.H.; Parhi, P.K.; Kim, D.J.; Nam, C.W.; Separ. Sci. Technol. 49, 647-655, 2014.
[24] Bharadwaj, A.; Ting, Y.P.; Bioresour. Technol. 130, 673–680, 2013.
[25] Habashi, F.; “Handbook of extractive metallurgy”, Wiley VCH Company, USA, 1997.
[26] Montgomery, D.C.; “Design and Analysis of Experiments”, John Wiley and Sons, New York, 1991.
[27] Barrentine, L.B.; “An Introduction to Design of Experiments: A Simplified Approach”, ASQ Quality Press, USA, 367-376, 1999.
[28] Marafi, M.; Stanislaus A., Resour. Conserv. Recy. 53, 1-26, 2008.
[29] Akcil, A.; Veglio, F.; Ferella, F.; Okudan, M.D.; Tuncuk, A.; Waste Mmanage. 45, 420-433, 2015.
[30] Rene, E.R.; Sahinkaya, E.; Lewis A.; Lens, P.N.L.; “Sustainable Heavy Metal Remediation”, 1st Edition, Springer, Switzerland, 2017.
[31] Daniel, C.; Technometrics 1, 311-341, 1959.
[32] Mee, R.J.; Quat. Technol., 47, 107-109, 2015.
[33] Park, K.H. Mohapatra, D.; Reddy, B.R.; Nam, C.W.; Int. J. Miner. Process 80, 261–5, 2006.
[34] Park, K.H.; Mohapatra, D.; Reddy, B.R.; J. Hazard. Mater. B 138, 311–6, 2006.