• فهرس المقالات Hollow cylinder

      • حرية الوصول المقاله

        1 - Mechanical and Thermal Stresses in a FGPM Hollow Cylinder Due to Non-Axisymmetric Loads
        M Jabbari M Meshkini M.R Eslami
        In this paper, the general solution of steady-state two-dimensional non-axisymmetric mechanical and thermal stresses and mechanical displacements of a hollow thick cylinder made of fluid-saturated functionally graded porous material (FGPM) is presented. The general form أکثر
        In this paper, the general solution of steady-state two-dimensional non-axisymmetric mechanical and thermal stresses and mechanical displacements of a hollow thick cylinder made of fluid-saturated functionally graded porous material (FGPM) is presented. The general form of thermal and mechanical boundary conditions is considered on the inside and outside surfaces. A direct method is used to solve the heat conduction equation and the non-homogenous system of partial differential Navier equations, using the Complex Fourier Series and the power law functions method. The material properties, except of Poisson's ratio, are assumed to depend on the radial variable r and they are expressed as power law functions. تفاصيل المقالة
      • حرية الوصول المقاله

        2 - An Exact Solution for Classic Coupled Magneto-Thermo-Elasticity in Cylindrical Coordinates
        M Jabbari H Dehbani
        In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an e أکثر
        In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, the heat source and magnetic field vector are considered in the most general forms, where no limiting assumption is used. This generality allows to simulate a variety of applicable problems. The results are presented for thermal and mechanical shock, separately, and compare the effect of magnetic field on temperature and displacement. تفاصيل المقالة
      • حرية الوصول المقاله

        3 - An Exact Solution for Classic Coupled Thermoporoelasticity in Axisymmetric Cylinder
        M Jabbari H Dehbani
        In this paper, the classic coupled poro-thermoelasticity model of hollow and solid cylinders under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal أکثر
        In this paper, the classic coupled poro-thermoelasticity model of hollow and solid cylinders under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a distribute water source are considered in the most general forms and no limiting assumption is used. This generality allows simulation of several of the applicable problems. تفاصيل المقالة
      • حرية الوصول المقاله

        4 - Mathematical Modeling of Thermoelastic State of a Thick Hollow Cylinder with Nonhomogeneous Material Properties
        V. R Manthena N.K Lamba G.D Kedar
        The object of the present paper is to study heat conduction and thermal stresses in a hollow cylinder with nonhomogeneous material properties. The cylinder is subjected to sectional heating at the curved surface. All the material properties except for Poisson’s ra أکثر
        The object of the present paper is to study heat conduction and thermal stresses in a hollow cylinder with nonhomogeneous material properties. The cylinder is subjected to sectional heating at the curved surface. All the material properties except for Poisson’s ratio and density are assumed to be given by a simple power law in the axial direction. A solution of the two-dimensional heat conduction equation is obtained in the transient state. The solutions are obtained in the form of Bessel’s and trigonometric functions. For theoretical treatment, all the physical and mechanical quantities are taken as dimensional, whereas we have considered non-dimensional parameters, for numerical analysis. The influence of inhomogeneity on the thermal and mechanical behaviour is examined. The transient state temperature field and its associated thermal stresses are discussed for a mixture of copper and tin metals in the ratio 70:30 respectively. Numerical calculations are carried out for both homogeneous and nonhomogeneous cylinders and are represented graphically. تفاصيل المقالة
      • حرية الوصول المقاله

        5 - Analysis on Centrifugal Load Effect in FG Hollow Sphere Subjected to Magnetic Field
        S.M.R Khalili A.H Mohazzab M Jabbari
        This paper presents the effect of centrifugal load in functionally graded (FG) hollow sphere subjected to uniform magnetic field. Analytical solution for stresses and perturbation of the magnetic field vector are determined using the direct method and the power series m أکثر
        This paper presents the effect of centrifugal load in functionally graded (FG) hollow sphere subjected to uniform magnetic field. Analytical solution for stresses and perturbation of the magnetic field vector are determined using the direct method and the power series method. The material stiffness, the magnetic permeability and the density vary continuously across the thickness direction according to the power law functions of radial directions. Magnetic field results in decreasing the radial displacement, the radial and shear stresses due to centrifugal load and has a negligible effect on circumferential displacement and also small effect compared with the other quantities on the circumferential stress due to centrifugal load. Increasing the angular velocity results in increasing the all above quantities due to magnetic field. With increasing the power law indices the radial displacement, the shear and circumferential stresses due to centrifugal load and magnetic field all are decreased and the radial stress due to centrifugal load and magnetic field increased. تفاصيل المقالة
      • حرية الوصول المقاله

        6 - An Exact Solution for Classic Coupled Thermoporoelasticity in Cylindrical Coordinates
        M Jabbari H Dehbani
        In this paper the classic coupled thermoporoelasticity model of hollow and solid cylinders under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The the أکثر
        In this paper the classic coupled thermoporoelasticity model of hollow and solid cylinders under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source, and the injected volume rate per unit volume of a distribute water source are considered in the most general forms, and no limiting assumption is used. This generality allows simulation of various applicable problems. تفاصيل المقالة
      • حرية الوصول المقاله

        7 - Mechanical Stresses in a Linear Plastic FGM Hollow Cylinder Due to Non-Axisymmetric Loads
        M Shokouhfar M Jabbari
        In this paper, an analytical solution for computing the linear plastic stresses and critical pressure in a FGM hollow cylinder under the internal pressure due to non-Axisymmetric Loads is developed. It has been assumed that the modulus of elasticity was varying through أکثر
        In this paper, an analytical solution for computing the linear plastic stresses and critical pressure in a FGM hollow cylinder under the internal pressure due to non-Axisymmetric Loads is developed. It has been assumed that the modulus of elasticity was varying through thickness of the FGM material according to a power law relationship. The Poisson's ratio was considered constant throughout the thickness. The general form of mechanical boundary conditions is considered on the inside surfaces. In the analysis presented here the effect of non-homogeneity in FGM cylinder was implemented by choosing a dimensionless parameter, named m, which could be assigned an arbitrary value affecting the stresses in the cylinder. Distribution of stresses in radial, circumferential and shear directions for FGM cylinders under the influence of internal pressure were obtained. Graphs of variations of stress versus radius of the cylinder were plotted. The direct method is used to solve the Navier equations. تفاصيل المقالة
      • حرية الوصول المقاله

        8 - One-Dimensional Transient Thermal and Mechanical Stresses in FGM Hollow Cylinder with Piezoelectric Layers
        S.M Mousavi M Jabbari M.A Kiani
        In this paper, an analytical method is developed to obtain the solution for the one dimensional transient thermal and mechanical stresses in a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers. The FGM properties are assumed to depend o أکثر
        In this paper, an analytical method is developed to obtain the solution for the one dimensional transient thermal and mechanical stresses in a hollow cylinder made of functionally graded material (FGM) and piezoelectric layers. The FGM properties are assumed to depend on the variable r and they are expressed as power functions of r but the Poisson’s ratio is assumed to be constant. Transient temperature distribution, as a function of radial direction and time with general thermal boundary conditions on the inside and outside surfaces, is analytically obtained for different layers, using the method of separation of variables and generalized Bessel function. A direct method is used to solve the Navier equations, using the Euler equation and complex Fourier series. This method of solution does not have the limitations of the potential function or numerical methods as to handle more general types of the mechanical and thermal boundary conditions. تفاصيل المقالة
      • حرية الوصول المقاله

        9 - Estimation of Thermoelastic State of a Thermally Sensitive Functionally Graded Thick Hollow Cylinder: A Mathematical Model
        V. K Manthena N.K Lamba G.D Kedar
        The object of the present paper is to study temperature distribution and thermal stresses of a functionally graded thick hollow cylinder with temperature dependent material properties. All the material properties except Poisson’s ratio are assumed to be dependent أکثر
        The object of the present paper is to study temperature distribution and thermal stresses of a functionally graded thick hollow cylinder with temperature dependent material properties. All the material properties except Poisson’s ratio are assumed to be dependent on temperature. The nonlinear heat conduction with temperature dependent thermal conductivity and specific heat capacity is reduced to linear form by applying Kirchhoff’s variable transformation. Solution for the two dimensional heat conduction equation with internal heat source is obtained in the transient state. The influence of thermo-sensitivity on the thermal and mechanical behavior is examined. For theoretical treatment all physical and mechanical quantities are taken as dimensional, whereas for numerical computations we have considered non-dimensional parameters. A mathematical model is constructed for both homogeneous and nonhomogeneous case. Numerical computations are carried out for ceramic-metal-based functionally graded material (FGM), in which alumina is selected as ceramic and nickel as metal. The results are illustrated graphically. تفاصيل المقالة