افزایش کارایی سامانه هشدار سیلاب با استفاده از منحنی غیر قطعی بارش آستانه
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاری
1 - استادیار؛ دانشکده فنی و مهندسی؛ دانشگاه آزاد اسلامی؛ واحد علوم و تحقیقات؛ تهران؛ ایران
کلید واژه: سامانه هشدار سیل, سیلاب, عدم قطعیت, منحنی بارش آستانه, مدل HEC 1,
چکیده مقاله :
یکی از روشهای مهم و موثر در جلوگیری یا کاهش خسارات جانی و مالی سیلاب استفاده از سامانههای هشدار سیلاب میباشد. در همه سامانههای هشدار سیلاب از آشکارساز جهت شناسایی وقایع سیلاب مانند شاخصهای اقلیمی استفاده می شود. استفاده از منحنی بارش آستانه از روشهای متداول در هشدار سیلاب میباشد. در این روش با مقایسه بارشهای مشاهداتی یا پیشبینی شده با مقادیر آستانه حدی بارش، هشدار وقوع سیلاب اعلام میگردد. از ضعفهای اساسی استفاده از منحنیهای متداول بارش آستانه، قطعی در نظر گرفتن الگوی توزیع زمانی بارش و پارامترهای مدل بارش-رواناب نظیر نفوذ و جریانات پایه میباشند. در این تحقیق تلاش شده است با در نظر گرفتن عدم قطعیتهای پارامترها و متغیرهای ورودی مدل بارش-رواناب در تهیه منحنی بارش آستانه، ضعفهای منحنیهای متداول بارش آستانه برطرف گردد. نتایج این تحقیق نشان داد که منحنیهای بارش آستانه با در نظر گرفتن عدم قطعیتهای مذکور در مقایسه با منحنیهای متداول بارش آستانه دقت بسیار بالاتری دارند.
Flood warning systems are the important and effective approaches to prevention or mitigation life and property loss in any flood event. All flood warning systems use one or more flood event indicator such as climatological signals. Rainfall threshold curve is one the conventional flood events indicator in many flood warning systems. In this respect, observed or forecasted rainfall was compared with rainfall threshold to notify flood event. Application of some assumptions like constant rainfall patterns and rainfall-runoff model parameters such as loss and base flow is known as the main drawback of using conventional rainfall threshold curves. This study has considered uncertainties of rainfall-runoff model parameters and variables for extracting rainfall threshold curve, while solving shortcomings of the previous works. Results of this study demonstrated that extraction of the rainfall threshold curves by considering uncertainties of the mentioned variables and parameters represents a very higher accuracy respect to conventional rainfall threshold curves.
بهزادفر، م.، صادقی، س.ص.، خانجانی، م.ج. و حزباوی، ز. 1391. تأثیرپذیری تولید رواناب و رسوب خاکهای تحت چرخه انجماد-ذوب در شرایط شبیهساز باران. نشریه حفاظت منابع آب و خاک، 2 (1): 13-24.
شرافتی، ا. و ذهبیون، ب. (1392). تحلیل عدم قطعیت و تولید آماری الگوی رگبار در حوضه سیمره. مجله پژوهش آب ایران. 7 (13). 97-108.
Alfieri, L., Velasco, D. and Thielen, J. 2011. Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events. Adv. Geosci. 29, 69–75.
Amadio, P., Mancini, M., Menduni, G., Rabuffetti, D. and Ravazzani, G. 2003. A real-time flood forecasting system based on rainfall thresholds working on the Arno Watershed: definition and reliability analysis. In Proceedings of the 5th EGS Plinius Conference held at Ajaccio, Corsica, France.
Annunziati, A., Focardi, A., Focardi, P., Martello, S. and Vannocci, P. 1999. Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps – Tuscany, Italy, Plinius Conference ’99: Mediterranean Storms, Ed. Bios., 485–493.
Bacchini M, and Zannoni, A. 2003. Relations between rainfall and triggering of debris-flow: a case study of Cancia (Dolomites, Northeastern Italy). Nat Hazard Earth System, 3: 71–79.
Borga, M., Boscolo, P., Zanon, F. and Sangati, M. 2007. Hydrometeorological analysis of the August 29, 2003 flash flood in the eastern Italian Alps. Journal of Hydrometeorology, 8 (5), 1049–1067.
Boyogueno, S.H, Mbessa, M. and Tatietse, T.T. 2012. Prediction of Flow-Rate of Sanaga Basin in Cameroon Using HEC-HMS Hydrological System: Application to the Djerem Sub-Basin at Mbakaou. Energy and Environment Research; 2(1): 205-216.
Bronstert, A., Ghazi, A., Hlandy, J., Kundzewicz, Z. and Menzel, L. 1998. The Odra/Oder Flood in Summer 1997. Proceedings of the European Expert Meeting in Potsdam, 18. May 1998, Potsdam
Caine, N. 1980. The rainfall intensity–duration control of shallow landslides and debris flows. Geog Ann A 62:23–27.
Carpenter, T. M., Sperfslage J. A., Georgakakos K. P., Sweeney,T., and Fread, D. L. 1999. National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems, J. Hydrol., 224, 21–44.
Collier, C. G. (2007). Flash flood forecasting: What are the limits of predictability?, Q. J. Roy. Meteor. Soc., 133, 3–23.
Crosta, G. B. and Frattini, P. 2000. Rainfall thresholds for soil slip and debris flow triggering, Proceedings of the EGS 2nd Plinius Conference on Mediterranean Storms, Ed. Bios.
Dahal, R.K., Hasegawa, S. 2008. Representative rainfall thresholds for landslides in the Nepal Himalaya, Geomorphology, 100 (3-4), 429-443.
Dorp. R, Kotz .S. 2002. A novel extension of the triangular distribution and its parameter estimation. The Statistician. 51, Part 1, pp. 63–79.
Georgakakos, K. P. 2006. Analytical results for operational flash flood guidance, J. Hydrol., 317, 81–103.
Golian Saeed, Saghafian Bahram and Maknoon Reza. 2010. Derivation of probabilistic thresholds of spatially distributed rainfall for flood forecasting", Water Resources Management, 24 (13): 3547-3559.
Javelle, P., Fouchier, C., Arnaud, P., and Lavabre, J. 2010. Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations, J. Hydrol., 394, 267–274.
Kobold, M. and Sušelj, K. 2005. Precipitation forecasts and their uncertainty as input into hydrological models, Hydrol. Earth Syst. Sci., 9, 322-332.
Majidi.A, Shahedi.K. 2012. Simulation of Rainfall-Runoff Process Using Green-Ampt Method and HEC-HMS Model (Case Study: Abnama Watershed, Iran). International Journal of Hydraulic Engineering, 1(1): 5-9
Martina, M. L. V., Todini, E., and Libralon, A. 2005. A Bayesian decision approach to rainfall thresholds based flood warning, Hydrol. Earth Syst. Sci., 10, 413–426.
Maskey, Sh., Guinot, V. and Price, R. K., 2004. Treatment of precipitation uncertainty in rainfall-runoff modelling: a fuzzy set approach, Advances in Water Resources, Volume 27, Issue 9, Pages 889-898.
Mendicino .G. 2006. Rainfall and hydrometric thresholds for flood warning. Proceedings of the AMHY-FRIEND, International Workshop on Hydrological Extremes, University of Calabria, Cosenza (Italy), May 3-4.
Montesarchio, V., Lombardo, F., and Napolitano, F. 2009. Rainfall thresholds and flood warning: an operative case study, Nat. Hazards Earth System Science, 9: 135–144.
Montesarchio, V., Ridolfi, E., Russo, F., Napolitano, F. 2011. Rainfall threshold definition using an entropy decision approach and radar data. Natural Hazards and Earth System Sciences 11, 2061–2074.
Montesarchio, V., Napolitano, F., Rianna, M., Ridolfi, E., Russo, F. and Sebastianelli, S. 2015. Comparison of methodologies for flood rainfall thresholds estimation. Natural Hazards, 75(1): 909-934.
Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E. and Anquetin, S. 2008. Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. Journal of Hydrology 362 (3-4), 274–290.
Neary, D. G. and Swift, L. W. 1987. Rainfall thresholds for triggering a debris flow avalanching event in the southern Appalachian Mountains, Rew. Eng. Geol., 7, 81–95.
Shrestha, D.L. 2009. Uncertainty Analysis in Rainfall-Runoff Modelling: Application of Machine Learning Techniques, P.H.D thesis in Hydroinformatics with Distinction, Delft university.
Thieken, A. H., Kreibich, H., M¨uller, M., and Merz, B. 2007. Coping with floods: preparedness, response and recovery of flood affected residents in Germany in 2002, Hydrology Science Journal, 52 (5): 1016–1037.
Toth, E. 2015. Estimation of flood warning runoff thresholds in ungauged basins with asymmetric error functions. Hydrology & Earth System Sciences Discussions, 12(6(: 100-109.
USACE. 1998. HEC-1 flood hydrograph package user manual. Davis, CA: Hydrologic Engineering Centre.