نقش اقدامات زیستی بر فرآیند فرسایش خاک با استفاده از مدل InVEST در حوزه آبخیز شارقنج، خراسان جنوبی
محورهای موضوعی : مدیریت بهینه منابع آب و خاکرضا چمنی 1 , سحر مصطفایی یونجالی 2 , سید حمیدرضا صادقی 3 *
1 - دانش آموخته دکتری، گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور
2 - دانشجوی کارشناسی ارشد، گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور.
3 - استاد، گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور.
کلید واژه: خدمات بومسازگان, شبیه سازی در آبخیزداری, مدیریت جامع حوزه آبخیز, تخریب زمین,
چکیده مقاله :
مقدمه و هدف پژوهش: امروزه بومسازگانها نقش بی بدیلی در تأمین نیازهای انسانی و ارائه خدمات متنوع به ذینفعان خود برعهده دارند. اما بروز پدیدههای متعدد از جمله افزایش جمعیت و افزایش تقاضا برای رفع نیازهای انسانی، خدمات بومسازگان (ES) را با مشکل مواجه ساخته است. از این رو، تخریب زمین یک مسئله مهم محیطزیستی است که تحتتأثیر عناصر و عوامل مختلفی قرار دارد. برهمیناساس اقدامات مدیریتی و حفاظتی و استقرار پوشش گیاهی در یک آبخیز میتواند نقش ارزشمندی در حفاظت خاک و جلوگیری از فرسایش ایفا نماید. لذا در این پژوهش سعی شده است نقش عملیات زیستی و مدیریتی حوزه آبخیز شارقنج خراسان جنوبی بر فرسایش خاک در شدت های مختلف بارندگی مورد ارزیابی قرار گیرد.روش پژوهش: حوزه آبخیز شارقنج با مساحت 87/94 کیلومترمربع در شهرستان بیرجند استان خراسان جنوبی واقع شده است. میانگین بارندگی سالیانه آبخیز نیز حدود 210 میلی متر است. حوزه آبخیز شارقنج به دلیل دارا بودن شیب زیاد در قسمت شرق و جنوب شرق، قرارگیری مناطق مسکونی و اراضی باغی در حریم و بستر رودخانه و رژیم بارشی شدید در بهار از پتانسیل سیل خیزی خوبی برخوردار است. برای ارزیابی نقش عملیات اصلاحی زیستی بر فرآیند فرسایش خاک در حوزه آبخیز مطالعاتی از مدل InVEST استفاده شد. برای آمادهسازی ورودیهای مدل از دادههای بارندگی سالیانه ایستگاههای قائن، بیرجند، موسویه و منصورآباد برای دوره زمانی 1381 تا 1399 و برای دوره بازگشت های 2، 5، 10 و 50 سال استفاده شد. در ادامه عاملهای فرسایندگی باران، فرسایشپذیری خاک، مدیریت پوشش و عامل حفاظت زمین تعیین شد.یافته های پژوهش: بیشینه مقادیر شاخص فرسایندگی باران در دوره بازگشت های 2، 5، 10 و 50 سال به ترتیب 08/47، 68/63، 01/85 و 94/98 و کمینه این عامل در همان دوره بازگشت ها به ترتیب 88/42، 68/56، 47/74 و 85/85 مگاژول در میلیمتر بر هکتار بر ساعت تعیین شد. همچنین مقدار رسوب تولیدشده در دوره بازگشتهای 2، 5، 10 و 50 سال به ترتیب 27/6699، 56/9024، 27/17452 و 30/20862 تن بوده که بعد از اعمال سناریوی مدیریتی به ترتیب به 39/6439، 37/8668، 94/16892 و 87/17390 تن کاهش یافته است. نتایج به دست آمده بر کاهش 9/3، 9/3، 2/3 و 7/1 درصد به ترتیب برای دوره بازگشتهای 2، 5، 10 و 50 سال دلالت دارد.نتیجهگیری: در این پژوهش نقش مدیریت زیستی در کنترل فرسایش و رسوب در سطح حوزه آبخیز شارقنج در دوره بازگشت های مختلف بارندگی مورد ارزیابی قرار گرفته است. نتایج پژوهش حاکی از آن است که با افزایش شدت بارندگی، در کاربری فعلی، میزان فرسایش و رسوب افزایش یافته است اما با اعمال سناریوهای مدیریتی در سطح زیرآبخیزهای مختلف، فرسایش و رسوب در دوره بازگشت های مختلف بارندگی، کمی کاهش یافته است. با توجه به اینکه شدت بارندگی در منطقه نقش مهمی در ایجاد فرسایش ایفا می کند و اثر آن با ترکیب اراضی شیب دار تشدید میشود، استفاده اصولی و متناسب با توان اراضی، می تواند نقشی مؤثری در پیش-گیری از تخریب زمین داشته باشد. لذا رهیافت های این پژوهش می تواند برای ارائه الگوی مدیریتی مناسب برای مدیران، بهره برداران و ذی نفعان حوزه های آبخیز سودبخش باشد.
Introduction and Aim: Ecosystems nowadays play a unique role in meeting human demands and offering a variety of services to their stakeholders. However, occurrence of various happening, including population increase and rising demand for basic human requirements, have created problems for Ecosystem Services (ES). As a result, land degradation is a significant environmental issue that is impacted by a variety of elements and factors. Soil conservation and erosion prevention can benefit from management and conservation measures, as well as the development of plant cover in a watershed. Therefore, an effort has been made in this study to assess how the Sharghong Watershed in Southern Khorasan, Iran, and its biological and management activities affect soil erosion at various rainfall intensities. Method: The Sharghong Watershed, with an area of 94.87 km2, is located in Birjand Township, South Khorasan Province, Iran. The mean annual precipitation in the watershed is approximately 210 mm. Due to its steep slopes in the eastern and southeastern parts, the presence of residential areas and barberry orchards in the floodplain, and intense precipitation in the spring, the Sharghong Watershed has a good potential for flooding. for evaluating. The role of biological restoration operations in soil erosion processes in study watershed InVEST Model was used. Annual precipitation data from the Qaen, Birjand, Mousavieh, and Mansourabad stations were utilized for the period between 2002 and 2020, with return periods of 2, 5, 10, and 50 years, to generate the inputs for the InVEST model. The erosivity, erodibility, crop management and land maintenance factor were then determined. Results: The maximum rainfall erosivity index (R) values for return periods of 2, 5, 10, and 50 years were 47.08, 63.68, 85.01, and 98.94 MJ mm ha-1h-1, respectively. The minimum values of R for the same return periods were 42.88, 56.68, 74.47, and 85.85 MJ mm ha-1h-1, respectively. The annual sediment yield for return periods of 2, 5, 10, and 50 years were 6699.27, 9024.56, 17452.27, and 20862.30 t, respectively. Following the implementation of the management scenario in different sub-watersheds, sediment yield reached 6439.39, 8668.37, 16892.94, and 17390.87 t, respectively. The obtained results indicated reductions of 3.9, 3.9, 3.2, and 1.7%, respectively, for return periods of 2, 5, 10, and 50 years. Conclusion: In this research, the role of biological management in controlling erosion and sedimentation in the Sharghonj Watershed during the different return periods of rainfall has been evaluated. The results of the research indicate that with the increase in the intensity of rainfall, in the current land use, the amount of erosion and sedimentation has increased, but with the application of management scenarios at the level of different sub-catchment, erosion and sedimentation has slightly decreased during the different return periods of rainfall. Due to the fact that the intensity of rainfall in the region plays an important role in creating erosion and its effect is intensified by the combination of sloping lands, the principled use of land in accordance with its potential can play an effective role in preventing land degradation. Therefore, the approaches of this research can be beneficial for providing a suitable management model for managers, operators and beneficiaries of watersheds.
Abdelsamie, E. A., Abdellatif, M. A., Hassan, F. O., El Baroudy, A. A., Mohamed, E. S., Kucher, D. E., & Shokr, M. S. (2023). Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones. Agriculture, 13(1), 35.
Akgöz, R., Deviren Saygin, S., Erpul, G., & Tel, S. (2022). Monitoring seasonal and phenological variability of cover management factor for wheat cropping systems under semi-arid climate conditions. Environmental Monitoring Assessment, 194, 395. Https:doi.org.10.1007.s10661-022-10064-1
Asadolahi, Z., Salmanmahiny, A. & Mirkarimi, H. (2015). Modeling the supply of sediment
retention ecosystem service (case study: eastern part of Gorgan-rud watershed). Environ. Erosion Research Journal, 5(3), 61-75 [in Persian]
Aytop, H., & Şenol, S. (2022). The effect of different land use planning scenarios on the amount of total soil losses in the Mikail Stream Micro-Basin. Environmental Monitoring Assessment, 194, 32. https:doi.org.10.1007.s10661-022-09937-2
Babaei, M., Hossaini, S.Z., Nazari Samani, A.A., & Almodaresi, S.A. (2016). Assessment of soil erosion using RUSLE 3D, case stady: Kan-Soleghan watershed. Watershed Engineering and Management, 8(2): 156-181 [In Persian].
Baskent, E.Z. (2020). A framework for characterizing and regulating ecosystem services in a management planning context. Forests, 11, 102. https:doi.org.10.3390.f11010102
Caglayan, İ, Yeşil, A., Kabak, Ö. & Bettinger, P. (2021). A decision making approach for assignment of ecosystem services to forest management units: A case study in northwest Turkey. Ecological Indicators, 121, 107056. https:doi.org.10.1016.j.ecolind.2020.107056
Carollo, F.G., Ferro, V., & Serio, M.A. (2018). Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment. Journal of Hydrology. https:doi. org. 10. 1016.j. jhydr ol. 2018. 03. 026
Chamani, R., Moradi Rekabkalaei, H.R., Somayeh Zare & Tavosi, M. (2021). Evaluation of morphometric and geomorphometric indices of Sharghonj Birjand Watershed. Extension and Development of Watershed Management Journal, 10(36): 37-47 [In Persian].
Chatterjee S., Krishna A.P., Sharma A.P. (2014). Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environmental Earth Sciences, 71:357–374. https:doi. org. 10. 1007. s12665- 013- 2439-3
Degife, A., Worku, H., & Gizaw, S. (2021). Environmental implications of soil erosion and sediment yield in Lake Hawassa watershed, south-central Ethiopia. Environmental Systems Research, 10, 1-24.
Ghosal, K., & Das Bhattacharya, S. (2020). A review of RUSLE model. Journal of the Indian Society of Remote Sensing, 48(4), 689-707.
Ghosh, A., Rakshit, S., Tikle, S., Das, S., Chatterjee, U., Pande, C.B., & Mattar, M. A. (2023). Integration of GIS and Remote Sensing with RUSLE Model for Estimation of Soil Erosion. Land, 12(1), 116.
Hagras, A. (2023). Estimating water erosion in the EL-Mador Valley Basin, South-West Matrouh City, Egypt, using revised universal soil loss equation (RUSLE) model through GIS. Environmental Earth Sciences, 82(1), 1-17.
Hermassi, T, El Ammami, H., & Ben, K.W. (2017) Impact of anthropogenic activities on erosive behavior of Nebhana Watershed Tunisia. Water and Land Security in Drylands. Springer, Cham, pp 185–195.
Keesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., van der & Putten, W.H. (2016). The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil, 2: 111–128.
Khalili Moghadam, B., Ghorbani, Z., & Shahnazi, A. (2013). A laboratory study of the effect of salinity and alkalinity, slope and rainfall intensity on soil erosion rates in selected soils of Khuzestan province. Journal of Agricultural and Natural Resources Sciences and Technologies, 18 (69): 117-128 [In Persian].
Knoke, T., Kindu, M., Schneider, T., & Gobakken, T. (2021). Inventory of forest attributes to support the integration of non-provisioning ecosystem services and biodiversity into forest planning—from collecting data to providing information. Current Forestry Reports, 7, 38–58. https:doi.org.10.1007.s40725-021-00138-7.
Kumar, S., & Kushwaha, S.P.S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science 122(2):389–398.
Li, Y., Zhang, J., Zhu, H., Zhou, Z., Jiang, S., He, S. & Li, G. (2023). Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models. International Journal of Environmental Research and Public Health, 20(2): 1222.
Mazbani, M., Rezaei Moghadam. M.H., & Hejazi, A. (2021). Assessing the risk of soil erosion in land uses using the modified global equation of soil erosion (case study: Sikan Watershed). Geography and Environmental Hazards, 37: 41-63 [In Persian].
Moisa, M. B., Babu, A., & Getahun, K. (2023). Integration of geospatial technologies with RUSLE model for analysis of soil erosion in response to land use/land cover dynamics: a case of Jere Watershed, Western Ethiopia. Sustainable Water Resources Management, 9(1): 1-21.
Moore, I.D. (1986). Burch GJ. Physical basis of the length-slope factor in the universal soil loss equation. Soil Science Society of America Journal. 50(5):1294.
Negese, A., Fekadu, E., & Getnet, H. (2021). Potential Soil Loss Estimation and Erosion-Prone Area Prioritization Using RUSLE, GIS, and Remote Sensing in Chereti Watershed, Northeastern Ethiopia. Air, Soil and Water Research. 14, 1178622120985814.
Okenmuo, F. C., & Ewemoje, T. A. (2023). Estimation of soil water erosion using RUSLE, GIS, and remote sensing in Obibia River watershed, Anambra, Nigeria. DYSONA-Applied Science, 4(1): 6-14.
Rezaei Arshad, R., & Mahmoodabadi, M. (2018). Simultaneous effect of wind and rain on hydraulic parameters of sheet flow and interrill erosion rate. Journal of soil management and sustainable, 8(2): 1-21 [In Persian].
Robinson, D.A., Panagos, P., Borrelli, P., Jones, A., Montanarella, L., Tye, A., Obst, C.G. (2017). Soil natural capital in Europe; a framework for state and change assessment. Scientific Reports. 7, 6706.
Roose, E. (1977). Erosion ET ruissellement en Afrique de louest-vingt annees de mesures en petites parcelles experimentales. Pour faire face a` ce proble`me pre´occupant, I’ORSTOM et les Instituts Travaux et Documents de I’ORSTOM No. 78: 108.
Sadeghi, S. H., & Tavangar, S. (2015). Development of stational models for estimation of rainfall erosivity factor in different timescales. Natural Hazards, 77(1), 429-443.
Sadeghi, S.H.R., Shojaee, Gh. R. & Moradi, H.R. (2010). Relationship between Land Use and Soil Erosion in Manderijan Catchment in Zayandehrud Dam Basin. Journal of Watershed Engineering and Management, 2(3):143-149.
Sharp, R., Tallis, H. T., Ricketts, T., Guerry, A. D., Wood, S. A., Chaplin-Kramer, R., Nelson
E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C. K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel, P., Vogl, A. L., Rogers, L., Bierbower, W., Denu, D. and Douglass J. (2018). InVEST 3.5.0 user’s guide, The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
Sidi Almouctar, M.A., Wu, Y., Zhao, F., & Dossou, J.F. (2021). Soil erosion assessment using the RUSLE model and geospatial techniques (remote sensing and GIS) in South-Central Niger (Maradi Region). Water, 13: 3511.
Thapa, P. (2020). Spatial estimation of soil erosion using RUSLE modeling: a case study of Dolakha district, Nepal. Environmental Systems Research, 9(1), 1-10.
Tiemann, A., & Ring, I. (2022). Towards ecosystem service assessment: Developing biophysical indicators for forest ecosystem services. Ecological Indicators, 137: 108704.
Vaezi, A.R. & Sadeghi, S.H.R. (2011). Evaluating the RUSLE model and developing an empirical equation for estimating soil erodibility factor in a semi-arid region, Spanish Journal of Agricultural Research, 9(3), 912-923.
Vatandaşlar, C., & Yavuz, M. (2023). Useful indicators and models for assessing erosion control ecosystem service in a semi-arid forest landscape. Environmental Monitoring and Assessment, 195(1): 1-27.
Zabihi, M., Moradi, H. R., Khaledi Darvishan, A., & Gholamalifard, M. (2021). Application of InVEST ecosystem services model to prioritize sub-watersheds of Talar in term of soil erosion, sediment retention and yield. Environment and Water Engineering, 7(2): 293-303.
_||_