کاربرد شاخص هرست در تعیین حافظه طولانیمدت سریهای زمانی بارش و دبی ایستگاههای منتخب استان اردبیل
محورهای موضوعی : مدیریت آب در مزرعه با هدف بهبود شاخص های مدیریتی آبیاریرئوف مصطفی زاده 1 , وحیده مرادزاده 2 , نازیلا علائی 3 , زینب حزباوی 4 *
1 - دانشیار، گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی و عضو پژوهشکده مدیریت آب، دانشگاه محقق اردبیلی، اربیل، ایران.
2 - دانشجوی کارشناسی ارشد مهندسی آبخیزداری، گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
3 - دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران.
4 - استادیار، گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی و عضو پژوهشکده مدیریت آب، دانشگاه محقق اردبیلی، اردبیل، ایران.
کلید واژه: تجزیه و تحلیل پراکندگی, دامنه مقیاسبندی شده (R/S), نمایه تغییر اقلیم, تحلیل سری زمانی,
چکیده مقاله :
زمینه و هدف: آشفتگیهای اکوسیستم ناشی از عوامل اجتماعی بر تغییرات محیطزیست، دما، تبخیر و تعرق، تولید رواناب و دبی جریان تأثیر میگذارند. در همین راستا، شاخص هرست برای تحلیل تغییرات فرآیندهای هیدرولوژی ناشی از عوامل مختلف بهکار برده شده است. شاخص هرست بهعنوان یک ویژگی مهم برای تحلیل اثرات هیدرولوژی شناخته شده است. یکی از مناسبترین آزمونها برای تشخیص حافظه بلندمدت، آزمون دامنه مقیاسبندی شده (R/S) است. آزمون دامنه مقیاسبندی شده (R/S) امکان محاسبه پارامتر خود همانندی H (هرست) را ایجاد میکند که شدت وابستگی بلندمدت در یک سری زمانی را میسنجد. بنابراین پژوهش حاضر با هدف تعیین حافظه طولانیمدت سریهای زمانی بارش و دبی ایستگاههای منتخب استان اردبیل واقع در شمال غرب ایران با استفاده از شاخص هرست انجام شد.روش پژوهش: در پژوهش حاضر، به بررسی کاربرد شاخص هرست در تعیین حافظه طولانیمدت سریهای زمانی بارش و دبی ایستگاههای منتخب استان اردبیل حافظه بلندمدت در دادههای بارش و دبی سالانه (92-1370) در 17 ایستگاه بارانسنجی و 28 ایستگاه آبسنجی استان اردبیل پرداخته شد. مقادیر محاسباتی شاخص هرست از لحاظ میزان وابستگی و مقیاس ناپایداری در سری زمانی به پنج طبقه خیلی ضعیف تا خیلی قوی طبقهبندی شدند. تجزیه و تحلیل همبستگی مکانی شاخص هرست با استفاده از شاخص موران انجام شد. در ادامه مقادیر شاخص هرست به روش وزنی معکوس فاصله (IDW) در محیط ArcMap 10.8 درونیابی شد.یافتهها: در حالت کلی از 17 ایستگاه مورد بررسی به ترتیب 53/23، 41/29، 65/17 و 53/23 درصد در مقیاس پایداری خیلی ضعیف (55/0>H>5/0)، نسبتاً ضعیف (65/0>H>55/0)، نسبتاً قوی (75/0>H>65/0) و قوی (80/0>H>75/0) قرار گرفتند. در این میان، تنها 88/5 درصد مربوط به ایستگاه شمسآباد در مقیاس ناپایداری خیلی ضعیف (55/0>H>45/0) دستهبندی شد. طبق تجزیه و تحلیل 28 ایستگاه آبسنجی مورد بررسی به ترتیب 25، 50 و 42 /21 درصد در مقیاس پایداری نسبتاً ضعیف، نسبتاً قوی، قوی و 58/3 درصد در مقیاس ناپایداری خیلی ضعیف قرار گرفتند. در این بین، تنها ایستگاه عموقین در مقیاس ناپایداری خیلی ضعیف دستهبندی شد. بر اساس نتایج ایستگاههای بارانسنجی هیر، کوزهتپراقی و شمسآباد و احمدکندی دارای مقادیر مثبت شاخص موران هستند، بهعبارتی دارای مقادیر مشابه از نظر مکانی هستند. در بقیه ایستگاهها مقدار شاخص موران منفی هستند که به معنی عدم مشابهت مقادیر متغیرهای مورد بررسی بود و در حقیقت تشکیل خوشه ندادهاند. نتایج خوشهبندی در ایستگاههای آبسنجی نشان داد که ایریل در طبقه خوشهبندی زیاد-زیاد قرار گرفت و آتشگاه در خوشههای کم-کم و مقادیر مثبت شاخص موران طبقهبندی شد. بقیه ایستگاههای مورد مطالعه، خوشههای مشخصی تشکیل ندادند.نتیجهگیری: نتایج نشان داد که شاخص هرست برای ایستگاههای بارانسنجی مورد بررسی با میانگین 64/0 و انحراف معیار 11/0 بهدست آمد. همچنین شاخص هرست در ایستگاههای آبسنجی با میانگین 74/0 و انحراف معیار 12/0 بهدست آمد. در مجموع، دامنه مقادیر شاخص هرست و تغییرات مکانی آن در مورد دادههای بارش سالانه نشان داد که مقادیر بارش در دوره مورد مطالعه دارای پایداری مناسبی نیست. تغییرات مکانی شاخصهای مذکور نشان داد که تفاوت مشخصی بین مناطق مختلف استان از نظر پایداری مقادیر بارش و دبی وجود دارد. این در حالی است که بر اساس نمودار جعبهای، دامنه تغییرات و نیز پراکنش مکانی ایستگاههایی با پایداری قوی و نسبتاً قوی، بیشتر ایستگاههای واقع در محدوده مرکزی استان دارای پایداری در مقادیر دبی هستند که میتواند بیانگر تداوم جریانهای پرآبی و هم وقوع دبیهای حداکثر باشد.
Background and Aim: Ecosystems disturbances induced from social factors affect the environmental changes, temperature, evapotranspiration, runoff production and flow rate. In this regard, Hurst index has been used to analyze changes in hydrological processes due to various factors. The Hurst index is known as an important feature for analyzing hydrological effects. One of the most appropriate tests for long-term memory detection is the rescaling range (R/S) test. The R/S test makes it possible to calculate the self-similarity parameter H (Hurst), which measures the severity of long-term dependence over a time series. Towards this, the present study was conducted to determine the long-term memory using Hurst index for precipitation and discharge time series throughout some selected stations in Ardabil Province, NW Iran.Method: In the present study, long-term memory for annual precipitation and discharge time series (1991-2013) in 17 rain gauges stations and28 river gauge stations in Ardabil Province was assessed. The Hurst index computational values were classified into five categories from very weak to very strong in terms of dependency and scale of instability in the time series. Spatial correlation analysis of Hurst index was performed using Moran index. The Hurst index values were then interpolated by the inverse weighted distance (IDW) method in Arc Map 10.8.Results: The results showed that the among 17 study stations, 23.53, 29.41, 17.65, and 23.53% respectively were classified in the stability scale of very weak (0.50<H<0.55), relatively weak (0.55<H<0.65), relatively strong (0.65<H<0.75), and strong (0.75<H<0.80). Meanwhile, only 5.88% including Shamsabad station were classified as very weak (0.45<H<0.55) in terms of instability scale. According to the analysis of 28 hydrometric stations, 25, 50, and 21.42% were respectively relatively weak, relatively strong, and strong, and 3.58% were very weak on the instability scale, respectively. In the meantime, only the Amuqin Station was categorized with very poorly scale. According to the results of Hir, KoozehTapraghi, Shamsabad and Ahmadkandi rain gauge stations, a positive value of Moran index was found indicating similar values in terms of location. In the other stations, the Moran index values are negative, inficating non-similar valuses and no clusters were formed. The results of clustering in hydrometric stations showed that Iril Station was in the high-high clusters and the Atashgah Station was classified in the low-low clusters and positive values of Moran index. The rest of the study stations did not form specific clusters.Conclusion: The results showed that the Hurst index was obtained for the rainfall stations with an average of 0.64 and a standard deviation of 0.11. The Hurst index was also obtained in hydrometric stations with an average of 0.74 and a standard deviation of 0.12. In general, the range of Hurst index values and its spatial variations on annual precipitation data showed that precipitation values in the study period are not stable. Spatial changes of the mentioned indicators showed that there is a clear difference between different regions of the province in terms of stability of precipitation and discharge. However, according to the box diagram, amplitude of changes and spatial distribution of stations with strong and relatively strong stability, most stations located in the central part of the province have stability in discharge values, which can indicate the continuation of water currents and the occurrence of maximum discharges.
Reference:
Ansari ghojghar, M., Pourgholam-Amiji, M. and Araghinejad, Sh. 2021. Investigating the relationship between drought and trend of the frequency of dust storms in the west and southwest of Iran. Iranian Journal of Soil and Water Research, 51(11): 2839-2852. [in Persian]
Bahri, A., and Khosravi, Y.2018. Application of ArcGIS spatial statistical tools in environmental sciences. Geospatial Engineering Journal, 9 (3): 39-50. [in Persian]
Barbulescu, A., Serban, C., Maftei, C. 2010. Statistical analysis and evaluation of Hurst coefficient for annual and monthly precipitation time series. Wseas Transactions on Mathematics, 10(9): 791-800.
Bassingthwaighte, J.B., and Raymond, G.M. 1995. Evaluation of the dispersional analysis method for fractal time series. Annals of Biomedical Engineering, 23(4):491-505.
Benavides-Bravo, F.G., Almaguer, F. Soto-Villalobos, R. Tercero-Gómez, V. and Morales-Castillo, J. 2015. Clustering of rainfall stations in RH-24 Mexico region using the Hurst exponent in semivariograms. Mathematical Problems in Engineering, Article ID 629254, 7 pages.
Ding, L., Luo, Y. Lin, Y. and Huang, Y. 2021. Revisiting the relations between Hurst exponent and fractional differencing parameter for long memory. Physica A: Statistical Mechanics and its Applications, 566(1):125603.
Dube. J., and Legros, D. 2014. Spatial autocorrelation. Spatial Econometrics using Microdata. 51-91.
Farzin, S. Mirhashemi, H. Abbasi, H. Maryanaji, Z. and Khosravinia, P. 2020. Assessing memory signal of time-series and simulation of rainfall-runoff process, using neural networks and wavelet-neural hybrid models. Watershed Engineering and Management, 11(4): 1059-1074. [in Persian]
Fathian, F., and Morid, S. 2012. Trend Analysis of Meteorological and Hydrological Variables in Urmia Lake Basin by use of Non-parametric Methods. Iranian Journal of Soil and Water Research, 43(3): 259-269. [in Persian]
Feng X. L., Luo, L.C. Qiu, L.L. Liu, P. and Feng, Z.L. 2008. Fractal analysis of climate change and Hurst index experiment in Tibetan plateau in future. Arid Land Geography, 31(2), 175-181.
Fu, W.J., Jiang, P.K. Zhou, G.M. and Zhao, K.L. 2014. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China. Biogeosciences. 11, 2401–2409.
Garberchet, J., Van, M. and Brown, G.O. 2004. Trends in precipitation, streamflow, and evapotranspiration in the great plains of the United States. Hydrologic Engineering, 9(5): 360-367.
Ghahraman, B. 2013. Performance of some different methods of computing Hurst exponent for climatological time series. Journal of Water and Soil, 27(4): 850-859. [in Persian]
Hamza, A.H., and Hmood, M.Y. 2021. Comparison of Hurst exponent estimation methods. Journal of Economics and Administrative Sciences, 27(128): 167-183.
Hurst, H.E. 1951. Long-term storage capacity of reservoirs (with discussion). Transactions of the American Society of Civil Engineers, 116: 770–808.
Jones, J., Creed, I.F. Hatcher, K. Warren, R. Adams, M. Benson, M. Boose, M. Brown, M. and campbe, J. 2012. Williams. Ecosystem Processes and human influences regulate streamflow response to climate change at long-term ecological research sites. Biological Sciences, 62(4): 390-404.
Koutsoyiannis, D. 2003. Climate change, the Hurst phenomenon, and hydrological statistics. Hydrological Sciences Journal, 48(1): 3-24.
Koutsoyiannis, D., Paschalis, A. and Theodoratos, N. 2011. Two-dimensional Hurst-Kolmogorov process and its application to rainfall fields. Journal of Hydrology, 398(1):91-100.
Liu, J. Chen, J. Xu, J. Lin, Y. Yuan, Z. and Zhou, M. 2019. Attribution of runoff variation in the headwaters of the Yangtze River based on the Budyko hypothesis. International journal of environmental research and public health, 16(14): 2506.
López-Lambraño, A.A. Fuentes, C. López-Ramos, A.A. Mata-Ramírez, J. and López-Lambraño, M. 2018. Spatial and temporal Hurst exponent variability of rainfall series based on the climatological distribution in a semiarid region in Mexico. Atmósfera, 31(3): 199-219.
Mehri, S. Mostafazadeh, R. Esmaliouri, A. and Ghorbani, A. 2017. Spatial and temporal variations of Base Flow Index (BFI) for the Ardabil Province Rivers, Iran. Journal of the Earth and Space Physics, 43(3): 623-634. [in Persian]
Millán, G. Macías, I. and Rabelo‑Lima, J. 2021. Hurst scaling with crossover of a drought indicator: a case study in Belem and Manaus, Brazil. Natural Hazards. https://doi.org/10.1007/s11069-021-04937-w.
Mostafazadeh, R. and Mehri, S. 2018. Determination of the precipitation regime and the seasonality index variations in the central part of the Ardabil Province. Watershed Management Research, 31(3): 28-39. [in Persian]
Munshi, J. 2017. The Hurst exponent of precipitation: England and Wales 1766-2016. Available at SSRN 2931893.
Peng, J. Liu, Z. Liu, Y. Wu, J. and Han, Y. 2012. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators, 14(1): 28-39.
Sheikh, Z. Yazdani, M.R. and Moghaddam nia, A. 2019. Evaluation of spatio-temporal changes of flow duration curve seasonal indexes (FDCSI) in four decades in Namak Lake Basin. Iran-Water Resources Research, 15(2): 39 -56. [in Persian]
Siabi, N., and Sanaeinejad, H. 2013. An investigation into using of combined geostatistical methods to increase precision in climatological classification and climatic parameters zoning in great Khorasan. Journal of Climate Research 15(4): 81-32. [in Persian]
Tian, Y. Zhong, D. Wei, Y. Morovati, K. Meng, Ch. and Zhang, M. 2019. Precipitation, runoff, and evaporation trends in Northwest China over the Past 40 Years. E-proceedings of the 38th IAHR World Congress. September 1-6, 2019, Panama City, Panama.
Vega, H. M. Lima, J.R. and Cerniak, S.N. 2019. SPEI and Hurst analysis of precipitation in the Amazonian Area of Brazil. Revisal Brasília de Meteorology: 34: 325-334.
Zamani, R., Mirabbasi, R., Abdollahi, S. and Jhajharia, D. 2017. Streamflow trend analysis by considering autocorrelation structure, long-term persistence, and Hurst coefficient in a semi-arid region of Iran. Theoretical and Applied Climatology, 129(1), 33-45.
_||_