مقایسه رفتار درد فرمالینی در موشهای سوری نر نرمال و کلستاتیک
محورهای موضوعی : پژوهش های بالینی دام های بزرگ
کلید واژه: موش سوری, درد, فرمالین, کلستاز, اوپیوئید داخلی,
چکیده مقاله :
درد یکی از مهمترین تظاهرات بالینی اکثر بیماری ها می باشد. با وجود پیشرفت های زیاد، درمان درد و اختلالات همراه آن از چالش های پیش روی پزشکان و محققان است. نشان داده اند که بستن مجاری صفراوی (کلستاز)در حیوانات به صورت تجربی و زردی در انسان، اثر داروها روی اندامها و گیرندهها را تغییر میدهد. بنابراین بررسی این موضوع که وجود توام این دو (درد و کلستاز) در یک شخص میتواند تداخلی داشته باشد یا نه موضوع مهمی میتواند باشد. هدف از این مطالعه، مقایسه رفتار درد فرمالینی در حیوانات نرمال و کلستاتیک می باشد. در این مطالعه تجربی از تعداد 30 سر موش سوری نر نژاد NMRI که به صورت تصادفی به 3 گروه تقسیم شدند، استفاده شد. به طوری که یک گروه نرمال، یک گروه جراحی شده بدون بستن مجرای صفراوی و یک گروه جراحی شده همراه با بسته شدن مجرای صفراوی بود. رفتار درد در حیوانات نرمال و هفت روز بعد از جراحی در دو گروه ارزیابی شد. برای ایجاد رفتار درد، فرمالین 5 درصد با حجم 20 میکرولیتر به صورت کف پایی تزریق و مدت زمان لیسیدن و گاز گرفتن پنجه پای تزریق شده، در فواصل زمانی 5 دقیقه ای به مدت یک ساعت ثبت شد. نتایج نشان داد که تزریق کف پایی فرمالین یک رفتار درد دو مرحله ای ایجاد می کند. کلستاز باعث کاهش معنی دار (05/0p<) پاسخ درد حاد و کاهش غیرمعنی دار (05/<0p) درد مزمن شد. بر اساس نتایج چنین می توان پیشنهاد کرد که کلستاز اثر کاهش دهنده درد و التهاب ایجاد می کند. این اثر احتمالا به دلیل افزایش اوپیوئیدهای داخلی است.
Pain is one of the most important clinical signs of diseases. Considering of the most advances, pain treatment and other effects of pain, is a major challenge for medicine and researchers. A number of studies have shown that cholestasis has changed the effect of drugs on receptors and tissuses, because cholestasis induced severe pathophysiological changes on tissues and receptor number. Also increase of endogenous opioid levels has reported in some of pathologic forms such as cholestasis. So, it is important to know if these (pain and cholestasis) can have contradictive effects in one patient or not. The aim of this study was comparison of formalin-induced pain response in normal and cholestasis mice. In this experimental study, 30 NMRI male mice were used and randomly divided into 3 groups, include normal, sham (surgery without bile duct ligated) and cholestasis (surgery with bile duct ligated). Pain response evaluated in normal and seven days after operation in sham and cholestatic animals. For induced pain response, formalin (20μl, 5%) injected intrapawley. The time of licking and biting of injected paw was measured as pain response at 5 minutes intervals for 1 hour. The results showed that formalin-induced a biphasic pain response. Cholestasis significantly decreased (p<0.05) the first (neurogenic pain) and no significantly decreased (p<0.05) second phase (inflammatory pain) of pain response. Our results suggested that the cholestasis reduce nociceptive and inflammatory effect probably via an increase on the endogenous opioids.
1- تمدنفرد، ا. و مجتهدین، ع. (1383): اثر تزریق داخل صفاقی سایمتیدین بر پاسخ درد ناشی از فرمالین در موش های سوری. مجله دانشکده دامپزشکی دانشگاه تهران، دوره 59، شماره 4، صفحات 378-373.
2- Bergasa, N.V., Alling, D.W., Vergalla, J. and Jones, E.A. (1994): Cholestasis in the male rat is associated with naloxone-reversible antinociception. J. Hepatol. 20(1): 85-90.
3- Bergasa, N.V., Rothman, R.B., Vergalla, J., Xu H., Swain, M.G. and Jones, E.A. (1992): Central Mu-opioid receptors are down-regulated in a rat model of cholestasis. J. Hepatol. 15: 220-224.
4- Dehpour, A.R., Akbarloo, N. and Ghafourifar, P. (1998): Endogenous nitric oxide modulated naloxane-precipitated withdrawal signs in a mouse model with acute cholestasis. Behav. Pharmacol. 9: 77-80.
5- Dehpour, A.R., Mani, A.R. and Amanlou, M. (1999): Naloxone is protective against indomethacin-induced gastric damage in cholestatic rats. J. Gastroenterol. 34: 178-181.
6- Dehpour, A.R., Rastegar, S. and Jorjani, M. (2000): Subsensitivity to opioids is receptor specific in isolated guinea pig lieum and mouse vas deferens after obstructive cholestasis. J. Pharmacol. Exp. Ther. 293: 945-951.
7- Dehpour, A.R., Sadeghipour, H.R. and Nowroozi, A. (2000): The effect of the serotonergic system on opioid withdrawal-like syndrome in a mouse model of cholestasis. Hum. Psychopharmacol. 15: 423-428.
8- Delroy, T. (2004): Chronic pain. Available at: http://www.painworld.zip.com.au/.
9- Diaz, A. and Dickenson, A.H. (1997): Blockade of spinal N- and P-type, but not L–type, calcium channels inhibits the excitability of rat dorsal horn neurones produced by subcutaneous formalin Inflammation. Pain 69(1-2): 93-100.
10- Ghafourifar, P., Dehpour, A.R. and Akbarloo, N. (1997): Inhibition by L-NA, a nitric oxide synthase inhibitor, of naloxone-precipitated withdrawal signs in a mouse model of cholestasis. Life Sci. 60(19):PL 265-70.
11- Hantos, M.B., Szalay, F., Lakatos, P.L., Hegedus, D., Firneisz, G., Reiczigel, J., Torok, T. and Tekes, K. (2002): Elevated plasma nociceptin level in patients with Wilson disease. Brain Res. Bull. 58: 311-313.
12- Hasanein, P. (2009): The endocannabinoid transport inhibitor AM404 modulates nociception in cholestasis. Neurosci. Lett. 462(3):230-4.
13- Hasanein, P. and Javanmardi, K. (2008): A potent and selective inhibitor of endocannabinoid uptake, UCM707, potentiates antinociception induced by cholestasis. Fundam. Clin. Pharmacol. 22(5): 517-22.
14- Hasanein, P., Parviz, M., Keshavarz, M., Javanmardi, K., Allahtavakoli, M. and Ghaseminejad, M. (2007): Modulation of cholestasis-induced antinociception in rats by two NMDA receptor antagonists: MK-801 and magnesium sulfate. European Journal of Pharmacology. 554: 123-127.
15- Hasanein, P., Shahidi, S., Komaki, A. and Mirazi, N. (2008): Effects of URB597 as an inhibitor of fatty acid amide hydrolase on modulation of nociception in a rat model of cholestasis. Eur J Pharmacol. 591(1-3):132-5.
16- Homayoun, H., Sayyah, M. and Dehpour, A.R. (2002): The additive effect of opioids and nitric oxide in increasing pentyleneterazole-induced seizure threshold in cholestatic mice. Journal of Gastroenterology and Hepatology. 17: 96-101.
17- Horvath, A., Folhoffer, A., Lakatos, P.L., Halosz, J., Illyes G., Schaff Z., Hantos M.B., Tekes K. and Szalay F. (2004): Rising plasma nociceptin level during development of HCC: a case report. World J. Gastroenterol. 10(1):152-4.
18- Katzung, B.G. (2004): Basic and Clinical Pharmacology, ninth edition, M.C. Graw Hill, USA, pp: 497-500 and 576-578.
19- Kremer, A.E., Beuers, U., Oude-Elferink, R.P. and Pusl, T. (2008): Pathogenesis and treatment of pruritus in cholestasis. Drugs. 68(15): 2163-82.
20- McRae, C.A., Prince, M.I., Hudson, M., Day, C.P., James, O.F. and Jones, D.E. (2003): Pain as a complication of use of opiate antagonists for symptom control in cholestasis. Gastroenterology. 125(2): 591-6.
21- Namiranian, K., Samini, M., Mehr, S.E. (2001): Mesenteric vascular bed responsiveness in bile duct-ligated rats: roles of opioid and nitric oxide systems. Eur. J. Pharmacol. 423: 185-193.
22- Nelson, L., Vergnolle, N., D'Mello, C., Chapman, K., Le T. and Swain, M.G. (2006): Endogenous opioid-mediated antinociception in cholestatic mice is peripherally, not centrally mediated. J. Hepatol. 44(6): 1141-9.
23- Ness, T.J. (1999): Models of visceral nociception. ILAR J. 40(3): 119-128.
24- Owczarek, D., Garlicka, M., Pierzchała-Koziec, K., Skulina, D. and Szulewski, P. (2003): Met-enkephalin plasma concentration and content in liver tissue in patients with primary biliary cirrhosis. Przegl. Lek. 60(7): 461-6.
25- Porro, C.A. and Cavazzuti, M. (1993): Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog. Neurobiol. 41(5): 565-607.
26- Rang, H.P., Dale, M.M., Ritter, J.M. and Moore, P.K. (2003): Pharmacology. Fifth Edition, Churchill Livingstone, USA, pp: 562-570.
27- Rastegar, H., Homayoun, H., Afifi, M., Rezayat, M. and Dehpour, A.R. (2002): Modulation of cholestasis-induced antinociception by CCK receptor agonists and antagonists. Eur. Neuropsychopharmacol. 12(2): 111-8.
28- Ren, K. and Dubner, R. (1999): Inflammatory models of pain and hyperalgesia. ILAR J. 40(3): 111-118.
29- Shutov, L., Kruglikov, I., Gryshchenko, O., Khomula, E., Viatchenko-Karpinski, V., Belan, P. and Voitenko, N. (2006): The effect of nimodipine on calcium homeostasis and pain sensitivity in diabetic rats. Cell Mol. Neurobiol. 26(7-8): 1541-1557.
30- Swain, M.G., MacArthur, L. and Vergalla, J. (1994): Adrenal secretion of BAM-22P, a potent opioid peptide, is enhanced in rats with acute cholestasis. Am. J. Physiol. 266: G201-G205.
31- Swain, M.G., Rothman, R.B. and Xu, H. (1992): Endogenous opioids accumulate in plasma in a rat model of acute cholestasis. Gastroenterology. 103: 630-635.
32- Terg, R., Coronel, E., Sordá, J., Muñoz, A.E. and Findor, J. (2002): Efficacy and safety of oral naltrexone treatment for pruritus of cholestasis, a crossover, double blind, placebo-controlled study. J. Hepatol. 37(6): 717-22.
33- Thornton, J.R. and Losowsky, M.S. (1988): Opioid peptides and primary biliary cirrhosis. B.M.J. 297: 1501-1504.
34- Thornton, J.R. and Losowsky, M.S. (1989): Methionine enkephalin is increased in plasma in acute liver disease and is present in bile and urine. J. Hepatol. 8: 53-59.
35- Tjolsen, A., Berge, O.G., Hunskaar, S., Rosland, J.H. and Hole, K. (1992): The formalin test: an evaluation of the method. Pain. 51(1): 5-17.
_||_