تدوین راهبردهای فنی هوشمندسازی مدیریت منابع آب در شهر همدان
هادی رضایی راد
1
(
گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.
)
مجید غریب زاهدی
2
(
دانشجوی کارشناسی ارشد گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران.
)
کلید واژه: مدیریت منابع آب, شهر هوشمند, تغییرات اقلیمی, راهبردهای هوشمندسازی,
چکیده مقاله :
بحران فزاینده منابع آب ناشی از تغییرات اقلیمی، کاهش بارندگی، افت سفرههای زیرزمینی و توسعه نامتوازن شهری، شهر همدان را با چالشهای جدی زیستمحیطی، اجتماعی و اقتصادی مواجه ساخته است. در این میان، هوشمندسازی بهعنوان رویکردی نوین در مدیریت منابع آب شهری، امکان تحول در ساختار تصمیمگیری و تخصیص منابع را فراهم میکند. در این پژوهش، از رویکرد ترکیبی کیفی–کمی استفاده شد. ابتدا شاخصهای مرتبط با شهر هوشمند و مدیریت منابع آب از طریق مرور نظاممند ادبیات استخراج گردید. سپس این شاخصها با بهرهگیری از روش دلفی و نظر خبرگان حوزه آب، پالایش و اعتبارسنجی شدند. در ادامه، دادههای حاصل با روش خوشهبندی طبیعی جنکس دستهبندی و میزان اثرگذاری ابعاد مختلف شهر هوشمند بر شاخصهای مدیریت منابع آب محاسبه گردید. نتایج کمی نشان داد که در میان ابعاد شهر هوشمند، محیط زیست هوشمند، حکمرانی هوشمند و اقتصاد هوشمند بیشترین تأثیر را بر شاخصهای مدیریت منابع آب داشتهاند در حالی که تحرک هوشمند کمترین تأثیر را داشته است. همچنین هشت شاخص کلیدی مدل شامل حکمرانی دیجیتال منابع آب با میانگین اثرگذاری 4/4، مشارکت فناورانه و سواد آبی شهروندی با میانگین اثرگذاری 5/4، پایش کیفی هوشمند با میانگین اثرگذاری آن 3/4، پایش کمی بلادرنگ با میانگین اثرگذاری 8/3، مدیریت یکپارچه دادهمحور با میانگین اثرگذاری 1/4، تابآوری اقلیمی و زیستی با میانگین اثرگذاری 7/3، تطبیق مکانی منابع و مصارف با میانگین اثرگذاری 2/4، و عدالت آبی و محرومیت فضایی با میانگین اثرگذاری1/4 شناسایی شدند. مقایسه بین شاخصها نشان داد که ابعاد مرتبط با حکمرانی و محیطزیست نسبت به سایر ابعاد، تأثیرگذاری بیشتری در بهبود مدیریت منابع آب دارند. جمعبندی کلی بیانگر آن است که مدل مفهومی پیشنهادی میتواند با شناسایی نقاط بحرانی، بهینهسازی تخصیص منابع و کاهش پرت آب، زمینه ارتقاء شفافیت نهادی، مشارکت شهروندی و تابآوری شهری را در برابر بحرانهای آتی فراهم سازد. همچنین، بهکارگیری این نتایج در قالب طرحهای توسعه شهری میتواند ضمن ایجاد همراستایی میان سیاستهای شهری و مدیریت هوشمند منابع آب، زمینه تحقق عملی دستاوردهای پژوهش، ارتقای کارایی طرحها و افزایش پایداری بلندمدت منابع آبی را فراهم سازد.
چکیده انگلیسی :
The growing water crisis caused by climate change, reduced precipitation, groundwater depletion, and unbalanced urban development has exposed the city of Hamedan to serious environmental, social, and economic challenges. In this context, “smartification” has emerged as an innovative strategy in urban water resource management, offering the potential to transform decision-making structures and resource allocation mechanisms.This study aims to develop an integrated conceptual model for implementing smart water resource management within the smart city framework of Hamedan. A mixed-methods approach (qualitative–quantitative) was adopted. In the first stage, key indicators related to smart cities and water resource management were extracted through a systematic review of the literature. These indicators were then refined and validated using the Delphi method, involving domain experts in the water sector. In the next phase, the data were analyzed and categorized using Jenks natural breaks clustering technique.
The final outcome is a conceptual model structured around the interaction between technology, governance, and civic participation. The model incorporates eight integrated indicators: (1) digital water governance, (2) technology-enabled citizen engagement and water literacy, (3) smart monitoring of water quality, (4) real-time quantitative monitoring, (5) integrated data-driven water management, (6) climatic and ecological resilience, (7) spatial adaptation of resources and demands, and (8) water equity and spatial deprivation.
The findings suggest that the proposed model not only enables the identification of critical hotspots, optimization of allocation, and reduction of water losses, but also promotes participatory governance, institutional transparency, and urban resilience in the face of future climate-related crises.
Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10), W10434. https://doi.org/10.1029/2008WR007615
Abbas-Novinpour, A., Esfandiar, M., Sadeghi-Aghdam, M., Kaki, F., & Mehri, A. (2021). The impact of climate change on surface and groundwater resources in the Rouzeh-Chay plain. New Findings in Applied Geology, 15(29), 15–27. https://doi.org/10.22084/nfag.2020.21337.1414. (In Persian)
Adeoti, S., Haremi, R., Kandasamy, J., & Vigneswaran, S. (2025). Evaluating the effectiveness of smart water management systems in enhancing the resilience and sustainability of water infrastructure in Nigeria. AQUA – Water Infrastructure, Ecosystems and Society, 74(2), 253–266. https://doi.org/10.2166/aqua.2025.291
Afruzi, S., Maryanji, Z., & Bazrafshan, J. (2022). Investigation of climate parameters trend in Hamadan and modeling and prediction of inflow runoff to Ekbatan Dam, Research Project. Hamedan Regional Water Company. https://doi.org/10.22059/ije.2016.59656. (In Persian).
Amiri, M., & Gheysari, A. (2012). Optimal management of drip and sprinkler irrigation using climatic data. Iranian Water Resources Engineering Journal, 7(3), 45–59. https://doi.org/10.1016/j.agwat.2012.10.025. (In Persian).
Anthopoulos, L. G. (2017). Understanding smart cities: A tool for smart government or an industrial trick? Cham: Springer. https://doi.org/10.1007/978-3-319-57015-0
Asadi, M. T., Zare Abyaneh, H., Delavar, N., & Asadi, A. (2019). The effect of climate change phenomenon on Hamadan climatic parameters. Environmental Science and Technology, 21(9), 1–14. https://doi.org/10.22034/jest.2020.21435.3046. (In Persian).
Ashofte, P., & Bozorg-Haddad, O. (2019). A probabilistic approach to assessing the impacts of climate change on water resources. https://dorl.net/dor/20.1001.1.20086377.1392.6.19.4.6. (In Persian).
Baneshi, A., & Mehraban, S. (2015). The role of smart buildings in managing energy and water consumption. Technology and Sustainable Development Quarterly, 6(2), 87–101. (In Persian).
Bartos, M., Wong, B., Kerkez, B., & Chiu, P. (2017). Open storm: A complete framework for sensing and control of urban watersheds. arXiv preprint arXiv:1708.05172. https://doi.org/10.48550/arXiv.1708.05172. (In Persian). Bharathi, P., Karthickkraja, A., & Pasoubady, S. (2025). Smart water irrigation system for efficient water resources management. Smart Irrigation Systems and IoT for Efficient Water Management, 151–156. https://doi.org/10.3390/en13236268
Charters, F., Cochrane, T., & Sullivan, A. (2021). The influence of urban surface type and characteristics on runoff water quality. Australian Journal of Basic and Applied Sciences, 5(7), 147–153. https://doi.org/10.1016/j.scitotenv.2020.142470
Ciampittiello, M., Marchetto, A., & Boggero, A. (2024). Climate change and water resources management: A review. Sustainability, 16(9), 3590. http://dx.doi.org/10.3390/su16093590
Döll, P., Trautmann, T., Gerten, D., Schmied, H. M., Ostberg, S., & Saaed, F. (2018). Risks for the global freshwater system at 1.5 °C and 2 °C global warming. Environmental Research Letters, 13(4), 044038. https://doi.org/10.1088/1748-9326/aab792
Dong, J., & Wang, J. (2015). A survey on smart water monitoring systems: Architecture, technologies and challenges. Sensors, 18(11), 3941. http://dx.doi.org/10.1007/s11356-014-4026-x
Elgendy, M., Hassini, S., & Coulibaly, P. (2024). Review of climate change adaptation strategies in water management: Case studies in the environment. Case Studies in the Environment, 5(1), 4. https://doi.org/10.1061/JHYEFF.HEENG-6014
El Hanjri, M., Kabbaj, H., Kobbane, A., & Abouaomar, A. (2023). Federated learning for water consumption forecasting in smart cities. In ICC 2023-IEEE International Conference On Communications (pp. 1798-1803). IEEE. https://doi.org/10.48550/arXiv.2301.13036
Elmi, S. D., Jahangir, S., & Shamsodini, A. (2024). Explaining the key drivers of smart cities with emphasis on knowledge-based societies. Urban Planning Knowledge, 7(4), 71–95. https://doi.org/10.22124/upk.2024.25444.1882. (In Persian).
Eslamian, S., Abedi-Koupai, J., & Salemi, H. (2019). Water resources in Iran: Status and perspectives. In Handbook of Drought and Water Scarcity (pp. 353–368). CRC Press. https://doi.org/10.1201/9781315226774
Eslami, R., & Rahimi, A. (2019). Policymaking and water crisis in Iran. Strategic and Macro Policy Quarterly, 7(27), 410–435. https://doi.org/10.32598/JMSP.7.3.5. (In Persian).
European Commission. (2022). The European smart cities strategy for sustainable water and energy. Retrieved from https://commission.europa.eu
Fadaei-Beghaei, M. (2019). Smart water network implementation for water distribution optimization. Proceedings of the 3rd National Conference on Agricultural Engineering and Sustainable Natural Resources, 1–9. (In Persian).
Fatemi, S. E., Bahramlou, M., & Adibrad, A. (2016). A study of structural and non-structural strategies for sustainable water resources management in Hamedan-Bahar Plain. Geography and Environmental Sustainability, 6(3), 55–67.
Ghoochanian, M., & Fashaee, M. (2022). Water resource management indicators with a focus on governance. Journal of Water and Sustainable Development, 9(1), 1–10. https://doi.org/10.22067/jwsd.v9i1.2110.1086
Gupta, A. D., Pandey, P., Feijóo, A., Yaseen, Z. M., & Bokde, N. D. (2020). Smart water technology for efficient water resource management: A review. Energies, 13(23), 6268. https://doi.org/10.3390/en13236268
Hancke, G. P., Silva, B. d. C. e., & Hancke, G. P. J. (2013). The role of advanced sensing in smart cities. Sensors, 13(1), 393–425. https://doi.org/10.3390/s130100393
HRWC: Hamedan Regional Water Company. (n.d.). Annual report on water resources balance in Hamedan province. Retrieved August 11, 2025.
Iancu, G., Ciolofan, S. N., & Drăgoicea, M. (2024). Real-time IoT architecture for water management in smart cities. Discover Applied Sciences, 6, 191. https://doi.org/10.1007/s42452-024-05855-9
Iran Meteorological Organization. (2023). Climate data report for Hamedan province (2000–2022). Tehran: IMO Publications.
IRIB News Agency. (2023). A look at the latest water crisis situation in Hamedan province. Islamic Republic of Iran Broadcasting. (In Persian).
IRNA: Islamic Republic News Agency (2024). Average groundwater level drop in Hamedan province reached 2 meters. (In Persian). https://report.mrc.ir/article_6482_a2c6cd65765cfa6a468b6386f12e2fac.pdf
Islamic Parliament Research Center. (2016). Smart city and its legal requirements. Tehran: Office for Infrastructure Studies. (In Persian).
Jafari, H., Nikdad, H., & Hosseini-Bidar, S. H. (2021). Investigation of the effects of smart pressure control in the water distribution network of Hamedan city. Proceedings of the 5th National Conference on Flow Measurement and Control in Industry and Power Plants, 1–7. (In Persian).
Jamsheedi, Sh. (2021). Requirements and roadmap for smartization of urban water distribution networks. Journal of Water and Wastewater Science and Engineering, 5(4), 4–15. https://doi.org/10.22112/jwwse.2020.217579.1185. (In Persian).
Jana, P. (2024). AI-powered IoT solutions for sustainable water management in cities. Uncertainty Discourse and Applications, 1(2), 158–169. https://doi.org/10.48313/uda.v1i2.37
Kalhori, M., Tadayon, M., Kohrizi, E., & Gheyasvand, M. (2025). Analysis and monitoring of water resources and drought using a combination of GRACE, MODIS, and Landsat 8 satellite images (Case study: Hamedan County). Water Resources and Climate Change, 1(1), 62–74. https://doi.org/10.22091/wrcc.2025.11390.1007
Karami, S. (2020). Re-examining the consequences and management strategies of climate change: The case of Iran's central watershed. Applied Research in Geographical Sciences, 20(59), 1–37. https://doi.org/10.29252/jgs.20.59.19.(In Persian).
Karamooz, M., Nazif, S., & Ahmadi, A. (2006). Indicators of sustainability in water resources management. The Biennial National Conference of the Iranian Society of Environmental Experts. https://www.jscimedcentral.com/public/assets/articles/environmentalscience-10-1080.pdf
Khatami, S. S., Bozorgmehr, K., Zarrin, A., & Fall Soleiman, M. (2022). Analysis of water resources management studies in Iran and the world. Geography and Environmental Hazards, 11(2), 251–271. https://doi.org/10.22067/geoeh.2022.73891.1136
Khatibi, H., Wilkinson, S., Eriwata, G., Sweya, L. N., Baghersad, M., Dianat, H., … & Javanmardi, A. (2022). An integrated framework for assessment of smart city resilience. EPB: Urban Analytics and City Science, 49(5), 1556–1577. https://doi.org/10.1177/23998083221092422
Mahdinejad, N., Mosari, F., Mosari, T., & Sarani, S. (2008). Water resources management and its strategies. The International Water Crisis Conference. https://sid.ir/paper/814419/fa
Maroufi, S., Maryanji, Z., & Hosseinzadeh Talaee, P. (2010). Investigation of trends and possible changes in annual temperature characteristics of Hamadan Province during 1976–2005. Journal of Irrigation Science and Engineering, 32(1), 27–41. https://doi.org/10.22055/jise.2010.13386. (In Persian).
Maryanji, Z., Toulabi Nejad, M., & Dolatshahi, Z. (2023). The effect of climate change on snowfall and its prediction in Hamadan County. Natural Geography Research, 55(1), 113–129. https://doi.org/10.22059/jphgr.2023.358026.1007765. (In Persian).
Mohammad Sanabadi, R. (2015). Application of variable rate technology in precision irrigation. Iranian Journal of Sustainable Agriculture, 8(1), 25–38. (In Persian).
Mohammadi, B. (2012). Trend analysis of annual rainfall over Iran. Geography and Environmental Planning Journal, 43(3), 21–24. https://dor.isc.ac/dor/20.1001.1.20085362.1390.22.3.6.1. (In Persian).
Mortezavi, S. M., Soleimani, K., & Ghaffari Movaq, F. (2011). Water resources management and sustainable development: A case study of Rafsanjan plain. Water and Wastewater Journal, 22(2), 126–131.
Motalabi, M., & Hagh-Bayan, H. (2023). Analyzing the complexities and ambiguities of the concept of smart cities. Human Geography Research. https://doi.org/10.22059/jhgr.2023.350092.1008554. (In Persian).
Mutchek, M., & Williams, E. (2014). Moving towards sustainable and resilient smart water grids. Journal of Environmental Management, 141, 104–113. http://dx.doi.org/10.3390/challe5010123
Oberscher, M., Rauch, W., & Sitzenfrei, R. (2022). Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management. Journal of Water Resources Planning and Management, 148(3), 04022002. https://doi.org/10.1016/j.scs.2021.103442
Pour Ahmad, A., Ziari, K., Hataminejad, H., & Parsa Pashabadi, Sh. (2018). Explanation of concept and features of a smart city. Bagh-e Nazar, 15(58), 5–26.
Rezapour, Z., Renani, M., & Amiri, H. (2021). Common resource management: Market, government, or neither? A review of water resource management studies in Iran (with emphasis on Ostrom's perspective). Iranian Journal of Economic Research, 26(88), 89–127. https://doi.org/10.22054/ijer.2021.47477.814
Rodgers, D. (2000). The evolution of smart cities and the smart water grid. New York: Urban Affairs Review.
Souri Nejad, A. (2020). Assessing the impact of climate change on renewable surface water resources in thirty national watersheds. Natural Geography Research, 52(3), 351–373. https://doi.org/10.22059/jphgr.2020.270634.1007309. (In Persian).
Stankovic, B. (2017). Women’s experiences of childbirth in Serbian public healthcare institutions: A qualitative study. International Journal of Behavioral Medicine, 24, 803–814. https://doi.org/10.1007/s12529-017-9672-1
Tahir, U., Yasmin, A., & Khan, U. H. (2016). Phytoremediation: Potential flora for synthetic dyestuff metabolism. Journal of King Saud University–Science, 28(2), 119–130. http://dx.doi.org/10.1016/j.jksus.2015.05.009
Turcu, C., & Turcu, C. E. (2018). IoT-oriented approach for water utility monitoring and control. arXiv preprint arXiv:1811.12807. https://doi.org/10.48550/arXiv.1811.12807. (In Persian).
Washburn, D., Sindhu, U., Balaouras, S., Dines, R. A., Hayes, N. M., & Nelson, L. E. (2010). Helping CIOs understand “smart city” initiatives: Defining the smart city, its drivers, and the way ahead. Forrester Research Report, 1–17.
WaterGAP Project. (2021). Global assessment of freshwater resources using WaterGAP.
WRCC.Qom: Water Resources Climate Change Research Center of Qom. (2022). Satellite-based estimation of runoff and groundwater level variations in Hamedan plain. Water Resources Climate Change, Qom University.
Yigitcanlar, T., Kamruzzaman, M., Foth, M., Sabatini-Marques, J., da Costa, E., & Ioppolo, G. (2018). Can cities become smart without being sustainable? A systematic review of the literature. Sustainable Cities and Society, 45, 348–365. https://doi.org/10.1016/j.scs.2018.11.033
Zhao, M., & Boll, J. (2022). Adapting water resources management to climate change: Insights for decision-making. Frontiers in Water, 4, 983228. https://doi.org/10.3389/frwa.2022.983228