Evaluation of triterpenes isolated from stems of Pouteria macahensis T. D. Penn. against Proteus mirabilis
Subject Areas : Phytochemistry: Isolation, Purification, CharacterizationGabriel da Silva Amaral 1 , Hermerson Dantas dos Santos 2 , Aline Oliveira da Conceição 3 , Fernando Faustino de Oliveira 4 , Rosilene Aparecida de Oliveira 5
1 - Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km-16, Salobrinho, 45662-900, Ilhéus, Bahia, Brasil
2 - Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km-16, Salobrinho, 45662-900, Ilhéus, Bahia, Brasil
3 - Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km-16, Salobrinho, 45662-900, Ilhéus, Bahia, Brasil
4 - Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km-16, Salobrinho, 45662-900, Ilhéus, Bahia, Brasil
5 - Departamento de Ciências Exatas e Tecnológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km-16, Salobrinho, 45662-900, Ilhéus, Bahia, Brasil
Keywords: Bioactive phytochemicals, microdilution, pentacyclic triterpenes, Sapotaceae,
Abstract :
This article presents the results from a phytochemical study on an acetonic extract from the stems of Pouteria macahensis T.D. Penn., an endemic species of the Brazilian Atlantic Rainforest. By means of the bioautography method, this extract was evaluated against Acinetobacter baummanii, Proteus mirabilis, Escherichia coli and Staphylococcus epidermidis bacteria, of which only the P. mirabilis was found to be susceptible. The acetonic extract was chromatographed on a silica gel column, eluted with hexane and ethanol, producing 14 groups, allowing the isolation of the following compounds: friedelin, 3β-friedelinol and 3β-erythrodiol linoleate, arachidate and linolenate. Their structures were elucidated based on data of IR, 1H NMR, 13C NMR, including DEPT-135, HSQC and HMBC techniques. The minimum inhibitory concentrations of the compounds tested against P. mirabilis growth, were 500.0 μg mL-1 for friedelin and erythrodiol and 600.0 μg mL-1 for 3β-friedelinol and esterified 3β-erythrodiol. Based on these results, the potential of these compounds to inhibit the growth of this bacterium was confirmed.
Amorim, A.M., Jardim, J.G., Lopes, M.M.M., Fiaschi, P., Borges, R.A.X., Perdiz, R.O., Thomas, W.W., 2009. Angiospermas em remanescentes de Floresta Montana no sul da Bahia, Brasil. Biota Neotropica 9(3), 313-348.
Ardon, A., Nakano, T., 1973. Triterpenes from the bark of Pouteria caimito. Planta Med. 23(4), 348-352.
Camilo, C.J., Alves Nonato, C.d.F., Galvão-Rodrigues, F.F., Costa, W.D., Clemente, G.G., Sobreira Macedo, M.A.C., Galvão Rodrigues, F.F., da Costa, J.G.M., 2017. Acaricidal activity of essential oils: a review. Trends Phytochem. Res. 1(4), 183-198.
Carpinella, M.C., De Bellis, L., Joray, M.B., Sosa, V., Zunino, P.M., Palacios, S.M., 2011. Inhibition of development, swarming differentiation and virulence factors in Proteus mirabilis by an extract of Lithrea molleoides and its active principle (Z,Z)-5-(trideca-4’,7’-dienyl)-resorcinol. Phytomedicine 18(11), 994-997.
Che, C.T., Koike, K., Cordel, G.A., Song, H.H.S., Dobberstein, R.H., 1980. Triterpenes of Pouteria torta (Sapotaceae). J. Nat. Prod. 43(3), 420-421.
CLSI, 2008. Clinical and Laboratory Standard Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard M27‐A2. Villanova, PA, USA.
Costa, D.L.M.G., Rinaldo, D., Varanda, E.A., de Sousa, J.F., Nasser, A.L.M., Silva, A.C.Z., Baldoqui, D.C., Vilegas, W., dos Santos, L.C., 2014. Flavonoid detection in hydroethanolic extract of Pouteria torta (Sapotaceae) leaves by HPLC-DAD and the determination of its mutagenic activity. J. Med. Food 17(10), 1103-1112.
Costa-Lotufo, L.V., Montenegro, R.C., Alves, A.P.N.N., Madeira, S.V.F., Pessoa, C., Moraes, M.E.A., Moraes, M.O., 2010. A contribuição dos produtos naturais como fonte de novos fármacos anticâncer: estudos no Laboratório Nacional de Oncologia Experimental da Universidade Federal do Ceará. Rev. Virtual Química, 2(1), 47-58.
Dini, I., 2011. Flavonoid glycosides from Pouteria obovata (R. Br.) fruit flour. Food Chem. 124, 884-888.
Fulgentius, N., Lugemwa, T., Huang, F.H., Bentley, D., Alfrodx, R.A., 1990. A Heliothis zea antifeedant from the abundant birch bark triterpene botulin. J. Agric. Food. Chem. 38, 494-496.
Galindo-Leal, C., Câmara, I.G., 2003. The Atlantic Forest of South America: Biodiversity Status, Threats and Outlook., in: Câmara, C.G-L. (Ed.), Atlantic Forest Hotspot Status: An Overview. Center for Applied Biodiversity Science and Island Press, Washington, D.C, pp. 3-11.
Gulyás-Fekete, G., Murillo, E., Kurtán, T., Papp, T., Illyés, T.Z., Drahos, L., Visy, J., Agócs, A., Turcsi, E., Deli, J., 2013. Cryptocapsinepoxide-type carotenoids from red mamey, Pouteria sapota. J. Nat. Prod. 76(4), 607-614.
Hernandez, C.L., Villaseñor, I.M., Joseph, E., Tolliday, N., 2008. Isolation and evaluation of antimitotic activity of phenolic compounds from Pouteria campechiana. Philipp. J. Sci. 137(1), 1-10.
Ma, J., Yang, H., Basile, M.J., Kennelly, E.J., 2004. Analysis of polyphenolic antioxidants from the fruits of three Pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. J. Agric. Food Chem. 52(19), 5873-5878.
Mahato, S.B., Kundu, A.P., 1994. 13C NMR spectra of pentacyclic triterpenoids-A compilation and some salient features. Phytochemistry 37(6), 1517-1575.
Mendes, C.C., Cruz, F.G. , David, J.M., Nascimento, I.P., David, J.P., 1999. Triterpenos esterificados com ácidos graxos e ácidos triterpênicos Isolados de Byrsonima microphylla. Quim. Nova 22(2), 185-188.
Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.
Mohammadhosseini, M., Venditti, A., Sarker, S.D., Nahar, L., Akbarzadeh, A., 2019. The genus Ferula: Ethnobotany, phytochemistry and bioactivities - A review. Ind. Crops Prod. 129, 350-394.
Montenegro, L.H.M., Oliveira, P.E.S., Conserva, L.M., Rocha, E.M.M., Brito, A.C., Araújo, R.M., Trevisan, M.T.S., Lemos, R.P.L., 2006. Terpenóides e avaliação do potencial antimalárico, larvicida, anti-radicalar e anticolinesterásico de Pouteria venosa (Sapotaceae). Rev. Bras. Farmacogn. 16 (Supl.), 611-617.
Pearson, M.M., Schaffer, J.N., 2015. Proteus mirabilis and urinary tract infections. Microbiol. Spectr. 3(5), UTI-0017-2013.
Pelliccari, R., Ardon, A., Bellavista, V., 1962. Triterpenes from Pouteria caimito. Planta Med. 22(2), 196-200.
Pennington, T.D., 2004. Sapotaceae (Sapodilla family), in: Sapotaceae (Sapodilla Family). The New York Botanical Garden, New Jersey, pp. 342-344.
Rather, I.A., Kimb, B.C., Bajpai, V.K., Park, Y.K., 2017. Self-medication and antibiotic resistance: Crisis, current challenges and prevention. Saudi J. Biol. Sci. 24(4), 808-812.
Salazar, G.C.M., Silva, G.D.F., Duarte, L.P., Vieira, S.A., Lula, I.S., 2000. Two epimeric friedelane triterpenes isolated from Maytenus truncata Reiss: H-1 and C-13 chemical shift assignments. Magn. Reson. Chem. 38(11), 977-980.
Schaffer, W., Campanili, M., 2010. Mata Atlântica: patrimônio nacional dos Brasileiros. Brasília, DF: Ministério do Meio Ambiente (Ed). Brasil, pp.1-408.
Silva, C.A.M., Simeoni, L.A., Silveira, D., 2009. Genus Pouteria: Chemistry and biological activity. Rev. Bras. Farmacogn. 19(2A), 501-509.
Souza, O., Sales, P. M., Simeoni, P. M., Silva, L. A., Silveira, E. C., Magalhães, D., 2012. Inhibitory activity of α-amylase and α-glucosidase by plant extracts from the Brazilian cerrado. Planta Med. 78, 393-399.
Torres-Rodríguez, A., Salinas-Moreno, Y., Valle-Guadarrama, S., Alia-Tejacal, I., 2011. Soluble phenols and antioxidant activity in mamey sapote (Pouteria sapota) fruits in postharvest. Food Res. Int. 44(7), 1956-1961.
Turcsi, E., Murillo, E., Kurtán, T., Szappanos, Á., Illyés, T.Z., Gulyás-Fekete, G., Agócs, A., Avar, P., Deli, J., 2015. Isolation of β-cryptoxanthin-epoxides, precursors of cryptocapsin and 3′-deoxycapsanthin, from Red Mamey (Pouteria sapota). J. Agric. Food Chem. 63(26), 6059-6065.
Viswanathan, M.B., Jeya Ananthi, J.D., Sathish Kumar, P., 2012. Antimicrobial activity of bioactive compounds and leaf extracts in Jatropha tanjorensis. Fitoterapia 83(7), 1153-1159.
Wang, B., Li, G.Q., Guan, H.S., Yang, L.Y., Tong, G.Z., 2009. A new erythrodiol triterpene fatty ester from Scorzonera mongolica. Acta Pharm. Sin. B. 44(11), 1258-1261.
Wansi, J.D., Sewald, N., Nahar, L., Martin, C., Sarker, S.D., 2018. Bioactive essential oils from the Cameroonian rain forest: A review - Part I. Trends Phytochem. Res. 2(4), 187-234.
Wansi, J.D., Sewald, N., Nahar, L., Martin, C., Sarker, S.D., 2019. Bioactive essential oils from the Cameroonian rain forest: A review - Part II. Trends Phytochem. Res. 3(1), 3-52.