Chemical composition, herbicidal, antifeedant and cytotoxic activity of Hedychium spicatum Sm.: A Zingiberaceae herb
Subject Areas : Phytochemistry: Isolation, Purification, CharacterizationAvneesh Rawat 1 , Payal Thapa 2 , Om Prakash 3 * , Ravendra Kumar 4 , A.K. Pant 5 , R.M. Srivastava 6 , D.S. Rawat 7
1 - Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, India
2 - Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, India
3 - Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, India
4 - Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, India
5 - Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, India
6 - Department of Entomology, College of Agriculture, G.B. Pant University of Agriculture and Technology, India
7 - Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, India
Keywords: Cytotoxicity, Essential oil, Antifeedant, herbicidal, <i>Hedychium spicatum</i>, <i>Spilosoma oblique</i>,
Abstract :
Essential oils have been used traditionally as herbal medicine in various ailments and can be used as a strong alternative to chemical pesticides. The yield of essential oil from Hedychium spicatum Sm. was 0.9 mg kg−1 regarding its fresh weight. The essential oil was then subjected to column chromatography for separation into polar ethyl acetate and non-polar hexane fractions. The chemical composition of hexane and ethyl acetate column fraction were determined by gas chromatography-mass spectrometry. In the present investigation, the marked effect of anticancer activity from hexane and ethyl acetate fraction of oil of H. spicatum Sm. rhizomes on A431 and MCF cell lines was assessed through micro-culture tetrazolium assay (MTT). The test samples were screened for cytotoxicity against the cell lines at different concentrations of 50, 100, 150 and 200 μL to determine the IC50 value. The hexane and ethyl acetate fractions were screened for their herbicidal activities against Raphanus raphanistrum and also assessed for the feeding performance of Spilosoma obliqua in the laboratory. For antifeedant activity, the antifeedant index calculated over 36 h for neonate larvae increased significantly with concentration in the treated diet. The sprout inhibition activity on Raphanus raphanistrum was studied using petri dish bioassay. The root and shoot length were measured for each concentration after evaluating the activity for 5 days. Based on all the observations, the results indicate that the different fractions of essential oil contain phytotoxic compounds that could be used to develop botanical pesticide and also in the field of cancer drug development.
Adams, R.P., 2007. Identification of essential oil components by gas chromatography mass spectroscopy.Allured Publishing Corporation, USA.
Adham, F.K., Rashad, E.M., Shoukry, I.F., Nasr, E.E. 2009. Host plants shifting affects the biology and biochemistry of Spodoptera littoralis (boisd.) (Lepidoptera: noctuidae). Egy. Acad. J. Biol. Sci. 2, 63-71.
Aggarwal, B.B., Yuan, W., Li, S., Gupta, S.C., 2013. Curcumin‐free turmeric exhibits anti‐inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res. 57(9), 1529-1542.
Ahmad, A., Misra, L.N., 1994. Terpenoids from Artemisia annua and constituents of its essential oil. Phytochemistry 37, 183-186.
Amri, I., Hanana, M., Jamoussi, B., Hamrouni, L., 2017. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: chemical composition and study of their herbicidal potential. Arabian J. Chem. 10, 3877-3882.
Angelini, L.G., Carpanese, G., Cioni, P.L., Morelli, I., Macchia, M., Flamini, G., 2003. Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem. 51(21), 6158-6164.
Asolkar, L.V., Chopra, R.N., 1992. Second Supplement to Glossary of Indian Medicinal Plants with Active Principles. Publications & Information Directorate.
Aydin, E., Türkez, H., Geyikoğlu, F., 2013. Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia 68(5), 1004-1009.
Ben El Hadj, A.I., Chaouachi, M., Bahri, R., Chaieb, I., Boussaid, M., Harzallah-Skhiri, F., 2015. Chemical composition and antioxidant, antibacterial, allelopathic and insecticidal activities of essential oil of Thymus algeriensis. Boiss. et Reut. Ind. Crops Prod. 77, 631-639.
Bhatt, I.D., Prasad, K., Rawat, S., Rawal, R.S., 2008. Evaluation of antioxidant phytochemical diversity in Hedychium spicatum: a high value medicinal plant of Himalaya. Pharmacogn Mag. 4, 202-205.
Butani, D., Juneja, S.S., 1984. Pests of radish in India and their control. Pesticides 18(5), 10-12.
Cha, J.D., Kim, Y.H., Kim, J.Y., 2010. Essential oil and 1,8-cineole from Artemisia lavandulaefolia induce apoptosis in KB cells via mitochondrial stress and caspase activation. Food Sci. Biotechnol. 19(1), 185-191.
Chen, W., Vermaak, I., Viljoen, A., 2013. Camphor—a fumigant during the black death and a coveted fragrant wood in ancient Egypt and Babylon—a review. Molecules 18(5), 5434-5454.
Clevenger, J.F., 1928. Apparatus for the determination of volatile oil. J. Pharm. Sci. 17(4), 345-349.
Dayan, F.E., Duke, S.O., 2014. Natural compounds as next generation herbicides. Plant Physiol. 166, 1090-1105.
De Martino, L., Mancini, E., Almeida, L.F.R., De Feo, V., 2010. The antigerminative activity of twenty-seven monoteroines. Molecules 15, 6630-6637.
Dudai, N., Poljakoff-Mayber, A., Mayer, A.M., Putievsky, E., Lerner, H.R., 1999. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 25, 1079-1089.
Ghildiyal, S., Gautam, M.K., Joshi, V.K., Goel, R.K., 2012. Pharmacological evaluation of extracts of Hedychium spicatum (Ham-ex-Smith) rhizome. Anc. Sci. Life 31(3), 117.
Gopanraj, G., Dan, M., Shiburaj, S., Sethuraman, M.G., George, V., 2005. Chemical composition and antibacterial activity of the rhizome oil of Hedychium larsenii. Acta Pharm. 55, 315-320.
Goren, A.C., Piozzi, F., Akcicek, E., Kılıç, T., Çarıkçı, S., Mozioğlu, E., Setzer, W.N., 2011. Essential oil composition of twenty-two Stachys species (mountain tea) and their biological activities. Phytochem. Lett. 4(4), 448-453.
Hassan, S.B., Gali-Muhtasib, H., Göransson, H., Larsson, R., 2010. Alpha terpineol: a potential anticancer agent which acts through suppressing NF-κB signalling. Anticancer Res. 30(6), 1911-1919.
Hussain, R.F., Nouri, A.M.E., Oliver, R.T.D., 1993. A new approach for measurement of cytotoxicity using colorimetric assay. J. Immunol. Methods 160(1), 89-96.
Jabran, K., Mahajan, G., Sardana, V., Chauhan, B.S., 2015. Allelopathy for weed control in agricultural systems. Crop Prot. 72, 57-65.
Jadhav, V., Kore, A., Kadam, V.J., 2007. In-vitro pediculicidal activity of Hedychium spicatum essential oil. Fitoterapia 78(7-8), 470-473.
Jalaei, Z., Fattahi, M., Aramideh, S., 2015. Allelopathic and insecticidal activities of essential oil of Dracocephalum kotschyi Boiss. from Iran: a new chemotype with highest limonene-10-al and limonene. Ind. Crops Prod. 73, 109-117.
Joshi, S., Chanotiya, C.S., Agarwal, G., Prakash, O., Pant, A.K., Mathela, C.S., 2008. Terpenoid compositions, and antioxidant and antimicrobial properties of the rhizome essential oils of different Hedychium species. Chem. Biodivers. 5(2), 299-309.
Kandil, M.A., Abdel-Aziz, N.F., Sammour, E.A., 2003. Comparative toxicity of chlorfluazuran and leufenron against cotton leafworm Spodoptera littoralis (Boisd). Egypt J. Agric. Res. 2, 645-661.
Kleinowski, A.M., Ribeiro, G.A., Milech, C., Braga, E.J.B., 2016. Potential allelopathic and antibacterial activity from Alternanthera philoxeroides. Hoehnea 43, 533-540.
Kohli, R.K., Singh, D., 1991. Allelopathic impact of volatile components from Eucalyptus on crop plants. Biol. Plant. 33, 475-483.
Kong, Q., Sun, F., Chen, X., 2013. Impact of fixed-dose combination of germacrone, curdione, and furanodiene on breast cancer cell proliferation. Cell J. (Yakhteh). 15(2), 160.
Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M., Mete, E., 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 99(18), 8788-8795.
Lakshmi, S., Padmaja, G., Remani, P., 2011. Antitumour effects of isocurcumenol isolated from Curcuma zedoaria rhizomes on human and murine cancer cells. Int. J. Med Chem. Article ID 253962.
Li, J., Bian, W.H., Wan, J., Zhou, J., Lin, Y., Wang, J.R., Wang, Z.X., Shen, Q., Wang, K.M., 2014. Curdione inhibits proliferation of MCF-7 cells by inducing apoptosis. Asian Pac. J. Cancer Prev. 15(22), 9997-10001.
Li, M., Zhang, N., Lin, Q.Y., 2008. Determination of germacrone and curdione in Radix Curcumae by HPLC. West China J. Pharm. Sci. 23(1), 105.
Liska, A., Rozman, V., Kalinovic, I., Ivecic, M., Balicevic, R., 2010. Contact and fumigant activity of 1,8-cineole, eugenol and camphor against Tribolium castaneum (Herbst). 10th International Working Conference on Stored Product Protection. 425, 716-720.
Magd El-Din, M., ElGengaihi, S.E., 2000. Join action of some botanical extracts against the Egyptian cotton leafworm, Spodoptera (Boised)) (Lepidoptera: Noctuidae). Egypt. J. Biol. P. Cont. 10, 51-56.
Marei, G.I.K., Rasoul, M.A.A., Abdelgaleil, S.A., 2012. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic. Biochem. Physiol. 103(1), 56-61.
Mohammadhosseini, M., 2017. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind. Crops Prod. 105, 164-192.
Mohammadhosseini, M., Sarker, S.D., Akbarzadeh, A., 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 199, 257-315.
Mohammadhosseini, M., Venditti, A., Sarker, S.D., Nahar, L., Akbarzadeh, A., 2019. The genus Ferula: Ethnobotany, phytochemistry and bioactivities - A review. Ind. Crops Prod. 129, 350-394.
Montenegro, I.J., del Corral, S., Diaz Napal, G.N., Carpinella, M.C., Mellado, M., Madrid, A. M., Cuellar, M.A., 2018. Antifeedant effect of polygodial and drimenol derivatives against Spodoptera frugiperda and Epilachna paenulata and quantitative structure‐activity analysis. Pest Manag. Sci. 74(7), 1623-1629.
Moteki, H., Hibasami, H., Yamada, Y., Katsuzaki, H., Imai, K., Komiya, T., 2002. Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines, but not a in human stomach cancer cell line. Oncol. Rep. 9(4), 757-760.
Muller, C.H., Muller, W.H., Haines, B.L., 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143, 471- 473.
Murata, S., Shiragami, R., Kosugi, C., Tezuka, T., Yamazaki, M., Hirano, A., Yoshimura, Y., Suzuki, M., Shuto, K., Ohkohchi, N., Koda, K., 2013. Antitumor effect of 1,8-cineole against colon cancer. Oncol. Rep. 30(6), 2647-2652.
Obeng-Ofori, D., Reichmuth, C.H., Bekele, A.J., Hassanali, A., 1998. Toxicity and protectant potential of camphor, a major component of essential oil of Ocimum kilimandscharicum, against four stored product beetles. Int. J. Pest Manag. 44, 203-209.
Pal, S.K., Shukla, Y., 2003. Herbal medicine: Current status and the future. Asian Pac. J. Cancer Prev. 4, 281-288.
Pavela, R., 2008. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother. Res. 22(2), 274-278.
Pham, H.N.T., Sakoff, J.A., Van Vuong, Q., Bowyer, M.C., Scarlett, C.J., 2018. Comparative cytotoxic activity between kaempferol and gallic acid against various cancer cell lines. Data in Brief 21, 1033-1036.
Prakash, O., Rajput, M., Kumar, M., Pant, A.K., 2010. Chemical composition and antibacterial activity of rhizome oils from Hedychium coronarium Koenig and Hedychium spicatum Buch-Ham. J. Essent. Oil Bear. Plants 13(2), 250-259.
Prashar, A., Locke, I.C., Evans, C.S., 2004. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif. 37(3), 221-229.
Rawat, S., Jugran, A.K., Bhatt, I.D., Rawal, R.S., 2018. Hedychium spicatum: a systematic review on traditional uses, phytochemistry, pharmacology and future prospectus. J. Pharm. Pharmacol. 70(6), 687-712.
Rozman, V., Kalinovic, I., Korunic, Z., 2006. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J. Stored Prod. Res. 43, 349-355.
Sadek, M.M., 2003. Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lep., Noctuidae). J. Appl. Entomol. 127(7), 396-404.
Salamci, E., Kordali, S., Kotan, R., Cakir, A., Kaya, Y., 2007. Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliophyllum var. Biochem. Syst. Ecol. 35(9), 569-581.
Sarker, S.D., Nahar, L., 2018. Phytochemicals and phyto-extracts in cosmetics Trends Phytochem. Res. 2(4), 185-186.
Schenk, J.R., 2009. Phytochemistry, allelopathy and the capability attributes of camphor laurel (Cinnamomum camphora L.) Ness & Eberm.). Ph.D. Thesis, Southern Cross University, Lismore, Australia.
Scrivanti, L.R., Zunino, M.P., Zygadlo, J.A., 2003. Tagetes minuta and Schinus areira essential oils as allelopathic agents. Biochem. Syst. Ecol. 31, 563-572.
Snedecor G.W., Cochran W.G., 1968. Statistical Methods. Oxford/IBH Publishing, New Delhi. p. 593.
Tandon, S., Mittal, A.K., Pant, A.K., 2009. Growth-regulatory activity of Trichilia connaroides (syn. Heynea trijuga) leaf extracts against the Bihar hairy caterpillar Spilosoma obliqua (Lepidoptera: Arctiidae). Int. J. Trop. Insect Sci. 29(4), 180-184.
Tiwari, S.N., Bhattacharya, A.K., 1987. Artificial diet for Spilosoma obliqua. The Memoirs Entomological Society of India. No.12. IARI, New Delhi. p. 297.
Turk, M.A., Tawaha, A.M., 2003. Inhibitory effects of aqueous extracts of black mustard on germination and growth of Lentil. Agron. J. 1, 28-30.
Venditti, A., Frezza, C., Serafini, I., Pulone, S., Scardelletti, G., Sciubba, F., Bianco, A., Serafini, M., 2018. Chemical profiling of the fruits of Styrax officinalis L. from Monti Lucretili (Latium region, Central Italy): Chemotaxonomy and nutraceutical potential. Trends Phytochem. Res. 2(1), 1-12.
Vokou, D., Douvli, P., Blionis, G. J., Halley, J. M., 2003. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J. Chem. Ecol. 29(10), 2281-2301.
Wansi, J.D., Sewald, N., Nahar, L., Martin, C., Sarker, S.D., 2018. Bioactive essential oils from the Cameroonian rain forest: A review - Part I. Trends Phytochem. Res. 2(4), 187-234.
Wansi, J.D., Sewald, N., Nahar, L., Martin, C., Sarker, S.D., 2019. Bioactive essential oils from the Cameroonian rain forest: A review - Part II. Trends Phytochem. Res. 3(1), 3-52.
Yan, J., Gang C., Shengqiang T., Yeping F., Liuqing S., Jianzhong L., 2005. Preparative isolation and purification of germacrone and curdione from the essential oil of the rhizomes of Curcuma wenyujin by high-speed counter-current chromatography. J. Chromatogr. 1-2, 207-210.
Yeh, R.Y., Shiu, Y.L., Shei, S.C., Cheng, S.C., Huang, S.Y., Lin, J.C., Liu, C.H., 2009. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 27(1), 26-32.
Zunino, M.P., Zygadlo, J.A., 2004. Effect of monoterpenes on lipid oxidation in maize. Planta 219(2), 303-309.