Fuzzy Cone Metric Spaces and Fixed Point Theorems for Fuzzy Type Contraction
Subject Areas : Transactions on Fuzzy Sets and SystemsMuhammed Raji 1 , Laxmi Rathour 2 , Lakshmi Narayan Mishra 3 , Vishnu Narayan Mishra 4
1 - Department of Mathematics, Confluence University of Science and Technology, Osara, Kogi State, Nigeria.
2 - Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl 796 012, Mizoram, India.
3 - Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
4 - Department of Mathematics,Indira Gandhi National Tribal University,Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484 887, India.
Keywords: Fuzzy cone metric spaces, Fixed point, Fuzzy mapping, Real Banach space,
Abstract :
The paper aims to introduce novel concepts of fuzzy type contractions and establish fixed point theorems for fuzzy mappings within the framework of fuzzy cone metric spaces. These contributions extend the existing literature on fuzzy mappings and fixed point theory. Through illustrative examples, we showcase the practical applicability of our proposed notions and results, demonstrating their effectiveness in real-world scenarios.
[1] Azam A. Fuzzy fixed points of fuzzy mappings via a rational inequality. Hacet. J. Math. Stat. 2011; 40(3): 421-431.
[2] Bag T. Some results on D*-fuzzy metric spaces. International Journal of Mathematics and Scientific Computing. 2012; 2(1): 29-33.
[3] Bag T. Fuzzy cone metric spaces and fixed point theorems on fuzzy T-Kannan and fuzzy TChatterjea type contractive mappings. Fuzzy Information and Engineering. 2015; 7(3): 305-315. DOI: http://doi.org/10.1016/j.fiae.2015.09.004
[4] Banach S. Sur les operations dans les ensembles abstraits et leur application aux equations itegrales. Fundamenta Mathematicae. 1922; 3(1): 133-181. DOI: https://doi.org/10.4064/fm-3-1-133-181
[5] Butnariu D. Fixed point for fuzzy mapping.Fuzzy sets and Systems. 1982; 7(2): 191-207. DOI: https://doi.org/10.1016/0165-0114(82)90049-5
[6] Ciric LB. A generalization of Banachs contraction principle. Proceedings of the American Mathematical Society. 1974; 45(2): 267-273. DOI: https://doi.org/10.2307/2040075
[7] Heilpern S. Fuzzy mappings and fixed point theorem. Journal of Mathematical Analysis and Applications. 1981; 83(2): 566-569. DOI: https://doi.org/10.1016/0022-247X(81)90141-4
[8] Ilic D, Rakocevic V. Common fixed point for maps on cone metric spaces. Journal of Mathematical Analysis and Applications. 2008; 341(2): 876-882. DOI: https://doi.org/10.1016/j.jmaa.2007.10.065
[9] Long-Guang H, Xian Z. Cone metric spaces and fixed point theorems for contractive mappings. Journal of Mathematical Analysis and Applications. 2007; 332(2): 1468-1476. DOI: http://doi.org/10.1016/j.jmaa.2005.03.087
[10] Morales JR, Rajas E. Cone metric spaces and fixed point theorem of T-Kannan contractions mappings. Int. J. Math. Anal. 2010; 4(4): 175-184. DOI: https://doi.org/10.48550/arXiv.0907.3949
[11] Phiangsungnoen S, Kumam P. Fuzzy fixed point theorems for multivalued fuzzy contractions in b-metric spaces. Journal of Nonlinear Science and Applications. 2015; 8(1): 55-63. DOI: https://doi.org/10.1186/s40467-014-0020-6
[12] Phiangsungnoen S, Sintunavarat W, Kumam P. Common α-fuzzy fixed point theorems for fuzzy mappings via βF-admissible pair. Journal of Intelligent & Fuzzy Systems. 2014; 27(5): 2463-2472. DOI: http://dx.doi.org/10.22436/jnsa.008.01.07
[13] Raji M. Generalized α-ψ contractive type mappings and related coincidence fixed point theorems with applications. The Journal of Analysis. 2023; 31(2): 1241-1256. DOI: https://doi.org/10.1007/s41478-022-00498-8
[14] Raji M, Ibrahim MA. Fixed point theorems for fuzzy contractions mappings in a dislocated bmetric spaces with applications. Annals of Mathematics and Computer Science. 2024; 21: 1-13. DOI: https://doi.org/10.56947/amcs.v21.233
[15] Raji M, Ibrahim MA, Rauf K, Kehinde R. Common fixed point results for fuzzy F-contractive mappings in a dislocated metric spaces with application.Qeios. 2024. DOI: https://doi.org/10.32388/SV98CN
[16] Rashid, M, Shahzad A, Azam A. Fixed point theorems for L-fuzzy mappings in quasipseudo metric spaces. Journal of Intelligent & Fuzzy Systems. 2017; 32(1): 499-507. DOI:https://doi.org/10.3233/JIFS-152261
[17] Rezapour SH, Hamlbarani R. Some notes on the paper Cone metric spaces and fixed point theorems for contractive mappings. Journal of Mathematical Analysis and Applications. 2008; 345(2): 719-724. DOI: https://doi.org/10.1016/j.jmaa.2008.04.049
[18] Shahzad A, Shoaib A, Khammahawong K, Kumam P. New Ciric Type Rational Fuzzy F-Contraction for Common Fixed Points. In Beyond Traditional Probabilistic Methods in Economics 2. 2019; 809: 215-229. DOI: https://doi.org/10.1007/978-3-030-04200-417
[19] Shahzad A, Shoaib A, Mahmood Q. Fixed point theorems for fuzzy mappings in b- metric space. Ital. J. Pure Appl. Math. 2017; 38: 419-42.
[20] Shoaib A, Kumam P, Shahzad A, Phiangsungnoen S, Mahmood Q. Fixed point results for fuzzy mappings in a b-metric space. Fixed point theory and Applications. 2018; 2018: 1-12. DOI: https://doi.org/10.1186/s13663-017-0626-8
[21] Weiss MD. Fixed points and induced fuzzy topologies for fuzzy sets. J. Math. Anal. Appl. 1975; 50: 142-150. DOI: https://doi.org/10.1016/0022-247X(75)90044-X
[22] Zadeh LA. Fuzzy sets. Information and Control. 1965; 8(3): 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X