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Abstract. The paper aims to introduce novel concepts of fuzzy type contractions and establish fixed point theorems
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1 Introduction

Banach’s fixed point theorem for contraction mappings has been one of the most influential results in math-
ematical analysis. Banach’s contraction principle [1] has been instrumental in the development of metric
fixed point theory, and has been used to solve a wide range of problems, including differential equations,
integral equations, optimization problems, and variational inequalities. Since its introduction, the Banach
contraction mapping principle has been generalized and refined in numerous ways, leading to a wealth of
articles dedicated to its improvement [2, 3, 4].
Guang and Xian [5] extended the notion of metric spaces by considering a real Banach space as the range
set, thereby introducing the concept of cone metric spaces. Through their exploration of cone metric spaces,
they uncovered significant properties that led to the derivation of several fixed point theorems, some of which
can be found in [6, 7, 8].
Zadeh [9] pioneered the concept of fuzzy sets, laying the foundation for subsequent research in fuzzy mathe-
matics. Building upon Zadeh’s work, Weiss [10] delved into fuzzy mappings and derived numerous fixed point
results. Heilpern [11] further expanded upon fuzzy mappings by introducing the concept of fuzzy contraction
mappings. He established a fixed point theorem for fuzzy contraction mappings akin to Nadler’s fixed point
theorem for multivalued mappings. Moreover, Bag [12] introduced the innovative notion of fuzzy cone metric
spaces, leveraging this framework to derive fixed point results for fuzzy T -Kannan contraction and fuzzy T -
Chatterjea contraction mappings. Recently, Raji and Ibrahim [13] proved some fixed point results for fuzzy
mappings in a complete dislocated b-metric space.
Based on the above insight, we introduce novel concepts of fuzzy type contractions and subsequently estab-
lish fixed point results for fuzzy mappings within the framework of fuzzy cone metric spaces. To bolster our
findings, we offer illustrative examples demonstrating the practical application of the presented results and
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concepts.
Throughout our discourse, we denote by E a fuzzy real Banach space, by F a fuzzy cone in E with a
non-empty interior, and by ≤ a partial ordering with respect to F .

2 Preliminaries

A fuzzy cone metric space integrates concepts from fuzzy metric space and cone metric space, offering a
broader and more adaptable approach to handle uncertainty and fuzziness in distance measurements. We
begin this section with a few key definitions.

Definition 2.1. [14, 15] A function with X as its domain and the interval [0, 1] as its range is called a fuzzy
set in X. F(X) represents the set of all fuzzy sets in X. The degree of membership of x in A is denoted by
the value A(x), given a fuzzy set A and a point x in X. A fuzzy set A’s α-level set is represented by [A]α
and has the following definition:

[A]α = {x : A(x) ≥ α} where α ∈ (0, 1), [A]0 = {x : A(x) > 0}

Definition 2.2. [16, 17] Let Y be a metric space and X a nonempty set. If a mapping T is a mapping from
X into F(Y ), the set of all fuzzy sets on Y , then it is referred to as a fuzzy mapping. The degree to which
y is a member of T (x) is the membership function of a fuzzy mapping T , represented as T (x)(y). Stated
differently, T (x)(y) represents y’s degree of membership in the fuzzy set T (x). Instead of using [T (x)]α to
denote the α-level set of T (x), we will simply use [Tx]α.

Definition 2.3. [18, 19] A fuzzy fixed point of a fuzzy mapping T : X → F(X) is defined as a point x ∈ X
where α ∈ (0, 1] and x ∈ [Tx]α.

Definition 2.4. [20] Consider the fuzzy real Banach space (E, ∥.∥), where ∥□∥ : E → R(I). Use E∗(I) to
indicate the range of ∥.∥,Thus, E∗(I) ⊂ R∗(I).

Definition 2.5. [21] An interior point is defined as member η ∈ A ⊂ R∗(I) if there exists r > 0 such that

S(η, r) = {δ ∈ R∗(I) : δ ⊖ η < r̄} ⊂ A

set of all interior points of A is called interior A.

Definition 2.6. [11] Fuzzy closed subset F of E∗(I) is defined as follows: for each sequence {ηn}, such that

lim
n→∞

ηn = η implies η ∈ F .

Definition 2.7. [22] A fuzzy cone is defined as a subset F of E∗(I) if
i. F is fuzzy closed,nonempty and F ≠ {0̄},
ii. a, b ∈ R, a, b ≥ 0, η, δ ∈ F =⇒ aη ⊕ bδ ∈ F

Definition 2.8. [22] A mapping x : R 7→ [0, 1] over the set R of all real numbers is called a fuzzy real number

Definition 2.9. [22] A fuzzy real number x is convex if x(t) ≥ ∧ (x(s), x(r)) where s ≤ t ≤ r.

Definition 2.10. [9] α-level set of fuzzy real number x is defined by {t ∈ R : x(t) ≥ α} where α ∈ (0, 1]. If
there exists a t0 ∈ R such that x(t0) = 1, then x called normal. For 0 < α ≤ 1, α-level set of an upper semi
continuous convex normal fuzzy real number η denoted by [η]α, serves as a closed interval [aα, bα], where
aα = −∞ and bα = +∞ are admissible.
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Definition 2.11. [22] Given a fuzzy cone F ∈ E∗(I) define a partial odering ≤ with respect to F by η ≤ δ
iff δ⊖ η ∈ F and η < δ indicates that η ≤ δ but η ̸= δ while η << δ will stand for δ⊖ η ∈ IntF where Int F
denote the interior of F .

Definition 2.12. [22] The fuzzy cone F is called normal if there exists a number K > 0 such tha for all
x, y ∈ E with 0̄ ≤ ∥x∥ ≤ ∥y∥ implies ∥x∥ ≤ K∥y∥. The least positive number satisfying above is called the
normal constant of F .

Definition 2.13. [22] If every growing sequence that is bounded from above is convergent, the fuzzy cone
F is said to be regular. That is {xn} is a sequence in E such that
∥x1∥ ≤ ∥x2∥ ≤ · · · ≤ ∥y∥ for some y ∈ E, then there exists x ∈ E such that ∥xn − x∥ → 0̄ as n→ ∞

Definition 2.14. [22] Let X be a nonempty set. Suppose the mapping d : X ×X 7→ E∗(I) satisfies
(fd1) d(x, y) ≥ 0̄ and d(x, y) = 0̄ iff x = y;
(fd2) d(x, y) = d(y, x);
(fd3) d(x, y) ≤ d(x, z)⊕ d(z, y) for all x, y, z ∈ X.
Then, the d is called a fuzzy cone metric and the pair (X, d) is called a fuzzy cone metric space.

Definition 2.15. [22] Let (X, d) be a fuzzy cone metric space. Let {xn} be a sequence in X and x ∈ X. If
for every c ∈ E with 0̄ << ∥c∥, there is a positive integer N such that for all n > N , d(xn, x) << ∥c∥, then,
{xn} is said to be convergent and converges to x and x is called the limit of {xn}. Denoted by

lim
n→∞

xn = x

Definition 2.16. [22] Let {xn} be a sequence in X and (X, d) be a fuzzy cone metric space. {xn} is referred
to as a Cauchy sequence in X if, for any c ∈ E with 0̄ << ∥c∥, there exists a natural integer N such that,
for any m,n > N, d(xn, xm) << ∥c∥.

Definition 2.17. [22] Let (X, d) be a metric space with fuzzy cones. X is referred to as a complete fuzzy
cone metric space if every Cauchy sequence is convergent in it.

Definition 2.18. [22] Let {xn} be a sequence in X and (X, d) be a fuzzy cone metric space with normal
fuzzy cone. Then
i. {xn} converges to x if and only if d(xn, x) → 0̄ as n→ ∞
ii. {xn} is a Cauchy sequence if and only if d(xm, xn) → 0̄ as m,n→ ∞

3 Main Results

We start this section with the definitions that follow.

Definition 3.1. Suppose (X, d) is a fuzzy cone metric space. Let T, S : X → X be two functions. Then
S is said to be fuzzy cone T -type I contraction if for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3, a4 ≥ 0 with
2a1 + a2 + a3 + a4 < 1 satisfying the following condition:

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]⊕ a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a3
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)
⊕ a4

d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.1)
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Definition 3.2. Suppose (X, d) is a fuzzy cone metric space. Let T, S : X → X be two functions. Then
S is said to be fuzzy cone T -type II contraction if for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3, a4 ≥ 0 with
2a1 + a2 + a3 + a4 < 1 satisfying the following condition:

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]⊕ a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

⊕a3
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)⊕ d (Tx, TSy)⊕ d (Ty, TSx)

⊕a4
d (Tx, TSx) d (Tx, TSy)⊕ d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy)⊕ d (Ty, TSx)

(3.2)

Theorem 3.3. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping. Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let x0 ∈ X be any arbitrary point in X. Define the iterate sequence {xn} by xn+1 = Sxn = Snx0,
Now, by using (3.1), we get

(Txn, Txn+1) = d (TSxn−1, TSxn)

≤ a1 [d (Txn−1, TSxn−1)⊕ d (Txn, TSxn)]

⊕a2
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)

⊕a3
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)⊕ d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

⊕a4
d (Txn−1, TSxn−1) d (Txn−1, TSxn)⊕ d (Txn, TSxn−1) d (Txn, TSxn)

d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

= a1 [d (Txn−1, Txn)⊕ d (Txn, Txn+1)]⊕a2
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)

⊕a3
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)⊕ d (Txn−1, Txn+1)⊕ d (Txn, Txn)

⊕a4
d (Txn−1, Txn) d (Txn−1, Txn+1)⊕ d (Txn, Txn) d (Txn, Txn+1)

d (Txn−1, Txn+1)⊕ d (Txn, Txn)

d (Txn, Txn+1) ≤ a1d (Txn−1, Txn)⊕ a1d (Txn, Txn+1)⊕ a2d (Txn, Txn+1)

⊕ a3d (Txn−1, Txn)⊕ a4d (Txn−1, Txn)

d (Txn, Txn+1) ≤
a1 + a3 + a4
1− (a1 + a2)

d (Txn−1, Txn) (3.3)
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Let λ = a1+a3+a4
1−(a1+a2)

. Since 2a1 + a2 + a3 + a4 < 1 implies that a1+a3+a4
1−(a1+a2)

< 1. Hence,

d (Txn, Txn+1) ≤ λd (Txn−1, Txn) ∀ n ∈ N (3.4)

Then, by repeated application of (3.4), we have

d
(
TSnx0, TS

n+1x0
)
≤ λnd (Tx0, TSx0) ∀ n ∈ N (3.5)

Since F is a normal cone with constant K, we have from (3.5),

d
(
TSnx0, TS

n+1x0
)
≤ λnKd (Tx0, TSx0) ∀ n ∈ N (3.6)

Implies
d
(
TSnx0, TS

n+1x0
)
≤ λnKdiα (Tx0, TSx0) for i = 1, 2 (3.7)

On taking the limit in (3.7), we have

lim
n→∞

diα
(
TSnx0, TS

n+1x0
)
= 0 for i = 1, 2, α ∈ (0, 1]

(
since

a1 + a3 + a4
1− (a1 + a2)

< 1

)
Hence,

lim
n→∞

d
(
TSnx0, TS

n+1x0
)
= 0 (3.8)

For any m > n where m,n ∈ N, we have,

d (Txn, Txm) ≤ d (Txn, Txn+1)⊕ d (Txn+1, Txn+2)⊕ · · · ⊕ d (Txm−1, Txm)

≤

[(
a1 + a3 + a4
1− (a1 + a2)

)n

+

(
a1 + a3 + a4
1− (a1 + a2)

)n+1

+ · · ·+
(
a1 + a3 + a4
1− (a1 + a2)

)m−1
]
d (Tx0, TSx0)

≤
[
λn + λn+1 + · · ·+ λm−1

]
d (Tx0, TSx0)

≤ λn
1

1− λ
d (Tx0, TSx0) (3.9)

So

d (TSnx0, TS
mx0) ≤ λn

1

1− λ
d (Tx0, TSx0) (3.10)

Since F is normal, we get

d (TSnx0, TS
mx0) ≤ λn

k

1− λ
d (Tx0, TSx0) (3.11)

Taking the limit as m,n→ ∞, we get

lim
m,n→∞

d (TSnx0, TS
mx0) = 0̄

(
since

a1 + a2 + a3 + a4
1− (a2 + a3)

< 1

)
(3.12)

This proves that {(TSnx0} is Cauchy sequence in X. Since X is a complete metric space, there exists v ∈ X
such that

lim
n→∞

(TSnx0 = v). (3.13)
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Now if T is subsequentially convergent, {Snx0} has a convergent subsequence.So there exists u ∈ X and {ni}
such that

lim
i→∞

Snix0 = u. (3.14)

Since T is continuous by (3.13), we get
lim
i→∞

TSnix0 = Tu. (3.15)

Considering (3.14) and (3.15), we get Tu = u.
Now

d (TSu, Tu) ≤ d (TSu, TSni(x0))⊕ d
(
TSni(x0), TS

ni+1(x0)
)
⊕ d

(
TSni+1(x0), Tu

)
.

d (TSu, Tu) ≤ a1
[
d (Tu, TSu)⊕ d

(
TSni−1(x0), TS

ni(x0)
)]

⊕ a2
d (Tu, TSu) d

(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))

⊕a3
d (Tu, TSu) d

(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (Tu, TSni(x0))⊕ d (TSni−1(x0), TSu)

⊕a4
d (Tu, TSu) d (Tu, TSni(x0))⊕ d

(
TSni−1(x0), TSu

)
d
(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (TSni−1(x0), TSu)

⊕λnid (Tx0, TSx0)⊕ d
(
TSni+1(x0), Tu

)
So

(TSu, Tu) ≤ λd
(
TSni−1(x0), TS

ni(x0)
)
⊕ 1

1− λ
λnd (Tx0, TSx0)⊕

1

1− λ
d
(
TSni+1(x0), Tu

)
Since F is normal cone with normal constant K, we have

(TSu, Tu) ≤ λKd
(
TSni−1(x0), TS

ni(x0)
)
⊕ k

1− λ
λnd (Tx0, TSx0)⊕

k

1− λ
d
(
TSni+1(x0), Tu

)
Taking the llimit i→ ∞, using (3.15) and λ < 1, we get
diα (TSu, Tu) = 0 for all α ∈ (0, 1] and i = 1, 2,
Hence,

d (TSu, Tu) = 0̄ (3.17)

So that TSu = Tu.
Since T is one-one, we get Su = u. So S has a fixed point.
if v is another fixed point of S, then Sv = v. Since S is type I contraction, we obtain

d (TSu, TSv) ≤ a1 [d (Tu, TSu)⊕ d (Tv, TSv)]⊕ a2
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)
⊕

a3
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)⊕ d (Tu, TSv)⊕ d (Tv, TSu)
⊕ a4

d (Tu, TSu) d (Tu, TSv)⊕ d (Tv, TSu) d (Tv, TSv)

d (Tu, TSv)⊕ d (Tv, TSu)
(3.18)

= a1 [d (Tu, Tu)⊕ d (Tv, Tv)]⊕ a2
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)
⊕

a3
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tu, Tv)⊕ d (Tv, Tu)
⊕ a4

d (Tu, Tu) d (Tu, Tv)⊕ d (Tv, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tv, Tu)
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Implies
d (TSu, TSv) = 0̄

So that TSu = TSv. Since S is injective, we get u = v. Thus,S has a unique fixed point.
Lastly, if T is sequentially convergent, by replacing n for ni, we get that

lim
n→∞

Snx0 = u.

Thus, {Snx0} is convergent to the fixed point u.
□

Theorem 3.4. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type II
contraction mapping. Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let x0 ∈ X be any arbitrary point in X. Define the iterate sequence xn by x(n+1) = Sxn = Snx0.
Now, by using (3.2), we get

(Txn, Txn+1) = d (TSxn−1, TSxn)

≤ a1 [d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)]

⊕a2
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)

⊕a3
d (Txn−1, TSxn−1) d (Txn, TSxn)

d (Txn−1, Txn)⊕ d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

⊕a4
d (Txn−1, TSxn−1) d (Txn−1, TSxn)⊕ d (Txn, TSxn−1) d (Txn, TSxn)

d (Txn−1, TSxn)⊕ d (Txn, TSxn−1)

= a1 [d (Txn−1, Txn+1)⊕ d (Txn, Txn)]⊕a2
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)

⊕a3
d (Txn−1, Txn) d (Txn, Txn+1)

d (Txn−1, Txn)⊕ d (Txn−1, Txn+1)⊕ d (Txn, Txn)

⊕a4
d (Txn−1, Txn) d (Txn−1, Txn+1)⊕ d (Txn, Txn) d (Txn, Txn+1)

d (Txn−1, Txn+1)⊕ d (Txn, Txn)

d (Txn, Txn+1) ≤ a1d (Txn−1, Txn)⊕ a1d (Txn, Txn+1)⊕ a2d (Txn, Txn+1)

⊕ a3d (Txn−1, Txn)⊕ a4d (Txn−1, Txn)

d (Txn, Txn+1) ≤
a1 + a3 + a4
1− (a1 + a2)

d (Txn−1, Txn) (3.20)

Let λ = a1+a3+a4
1−(a1+a2)

. Since 2a1 + a2 + a3 + a4 < 1 implies that a1+a3+a4
1−(a1+a2)

< 1. Hence,

d (Txn, Txn+1) ≤ λd (Txn−1, Txn) ∀ n ∈ N (3.21)
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Then, by repeated application of (3.21), we have

d
(
TSnx0, TS

n+1x0
)
≤ λnd (Tx0, TSx0) ∀ n ∈ N (3.22)

Since F is a normal cone with constant K, we have from (3.22),

d
(
TSnx0, TS

n+1x0
)
≤ λnKd (Tx0, TSx0) ∀ n ∈ N (3.23)

Implies
d
(
TSnx0, TS

n+1x0
)
≤ λnKdiα (Tx0, TSx0) for i = 1, 2 (3.24)

On taking the limit in (3.24), we have

lim
n→∞

diα
(
TSnx0, TS

n+1x0
)
= 0 for i = 1, 2, α ∈ (0, 1]

(
since

a1 + a3 + a4
1− (a1 + a2)

< 1

)
Hence,

lim
n→∞

d
(
TSnx0, TS

n+1x0
)
= 0 (3.25)

For any m > n where m,n ∈ N, we have,

d (Txn, Txm) ≤ d (Txn, Txn+1)⊕ d (Txn+1, Txn+2)⊕ · · · ⊕ d (Txm−1, Txm)

≤

[(
a1 + a3 + a4
1− (a1 + a2)

)n

+

(
a1 + a3 + a4
1− (a1 + a2)

)n+1

+ · · ·+
(
a1 + a3 + a4
1− (a1 + a2)

)m−1
]
d (Tx0, TSx0)

≤
[
λn + λn+1 + · · ·+ λm−1

]
d (Tx0, TSx0)

≤ λn
1

1− λ
d (Tx0, TSx0) (3.26)

So

d (TSnx0, TS
mx0) ≤ λn

1

1− λ
d (Tx0, TSx0) (3.27)

Since F is normal, we get

d (TSnx0, TS
mx0) ≤ λn

k

1− λ
d (Tx0, TSx0) (3.28)

Taking the limit as m,n→ ∞, we get

lim
m,n→∞

d (TSnx0, TS
mx0) = 0̄

(
since

a1 + a2 + a3 + a4
1− (a2 + a3)

< 1

)
(3.29)

This proves that {(TSnx0} is Cauchy sequence in X. Since X is a complete metric space, there exists v ∈ X
such that

lim
n→∞

(TSnx0 = v). (3.30)

Now if T is subsequentially convergent, {Snx0} has a convergent subsequence.So there exists u ∈ X and {ni}
such that

lim
i→∞

Snix0 = u. (3.31)
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Since T is continuous by (3.31), we get
lim
i→∞

TSnix0 = Tu. (3.32)

Considering (3.31) and (3.32), we get Tu = u.
Now

d (TSu, Tu) ≤ d (TSu, TSni(x0))⊕ d
(
TSni(x0), TS

ni+1(x0)
)
⊕ d

(
TSni+1(x0), Tu

)
.

d (TSu, Tu) ≤ a1
[
d (Tu, TSni(x0))⊕ d

(
TSni−1(x0), TSu

)]
⊕ a2

d (Tu, TSu) d
(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))

⊕a3
d (Tu, TSu) d

(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (Tu, TSni(x0))⊕ d (TSni−1(x0), TSu)

⊕a4
d (Tu, TSu) d (Tu, TSni(x0))⊕ d

(
TSni−1(x0), TSu

)
d
(
TSni−1(x0), TS

ni(x0)
)

d (Tu, TSni−1(x0))⊕ d (TSni−1(x0), TSu)

⊕λnid (Tx0, TSx0)⊕ d
(
TSni+1(x0), Tu

)
So

(TSu, Tu) ≤ λd
(
TSni−1(x0), TS

ni(x0)
)
⊕ 1

1− λ
λnd (Tx0, TSx0)⊕

1

1− λ
d
(
TSni+1(x0), Tu

)
Since F is normal cone with normal constant K, we have

(TSu, Tu) ≤ λKd
(
TSni−1(x0), TS

ni(x0)
)
⊕ k

1− λ
λnd (Tx0, TSx0)⊕

k

1− λ
d
(
TSni+1(x0), Tu

)
Taking the llimit i→ ∞, using (3.33) and λ < 1, we get
diα (TSu, Tu) = 0 for all α ∈ (0, 1] and i = 1, 2,
Hence,

d (TSu, Tu) = 0̄ (3.34)

So that TSu = Tu.
Since T is one-one, we get Su = u. So S has a fixed point.
if v is another fixed point of S, then Sv = v. Since S is type I contraction, we obtain

d (TSu, TSv) ≤ a1 [d (Tu, TSv)⊕ d (Tv, TSu)]⊕ a2
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)
⊕

a3
d (Tu, TSu) d (Tv, TSv)

d (Tu, Tv)⊕ d (Tu, TSv)⊕ d (Tv, TSu)
⊕ a4

d (Tu, TSu) d (Tu, TSv)⊕ d (Tv, TSu) d (Tv, TSv)

d (Tu, TSv)⊕ d (Tv, TSu)
(3.35)

= a1 [d (Tu, Tv)⊕ d (Tv, Tu)]⊕ a2
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)
⊕

a3
d (Tu, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tu, Tv)⊕ d (Tv, Tu)
⊕ a4

d (Tu, Tu) d (Tu, Tv)⊕ d (Tv, Tu) d (Tv, Tv)

d (Tu, Tv)⊕ d (Tv, Tu)

Implies

d (TSu, TSv) ≤ 2a1d (Tu, Tv)

< d (Tu, Tv) as 2a1 < 1,
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this is a contradiction. So that TSu = TSv. Since S is injective, we get u = v. Thus,S has a unique fixed
point.
Lastly, if T is sequentially convergent, by replacing n for ni, we get that

lim
n→∞

Snx0 = u.

Thus, {Snx0} is convergent to the fixed point u.

□

Example 3.5. Consider E = C[0, 1] and F = {η ∈ E∗(I) : η ≥ 0̄} and X = R. Let d : X ×X 7→ E∗(I) be a
fuzzy mapping define by

d(x, y)(t) =

{
|x−y|ek0

t , if t ≥ |x− y|ek0

0, if t < |x− y|ek0

Where k0 is a fixed number in [0, 1]. Now,

|x− y|ek0
t

≥ α =⇒ t ≤ |x− y|ek0
α

Thus, α-level set of d(x, y) are given by

[d(x, y)]α =

[
|x− y|ek0 . |x− y|ek0

α

]
, α ∈ (0, 1].

Choose the ordering ” ≤ ” as ” ⪯ ”, then it is easy to verify that,
(Fd1)d(x, y) ⪰ 0̄ and d(x, y) = 0̄ iff x = y;
(Fd2)d(x, y) = d(y, x);
(Fd3)d(x, y) ⪯ d(x, z)⊕ d(z, y) forall x, y, z ∈ X.
Then, the pair (X, d) is completely fuzzy cone metric space.
Now, show that (X, d) is a complete fuzzy cone metric space.
Let {xn} be a Cauchy sequence in (X, d). Then (xn, xm) → 0̄ as m,n → ∞, that is d1α(xn, xm) → 0̄ as
m,n → ∞ forall α ∈ (0, 1]. So {xn} is Cauchy sequence in X(R). Since X is complete, there exists x ∈ X
such that

|xn − x| → 0̄ as n→ ∞.

Thus, (X, d) is complete. Since for any η, µ ∈ E∗(I), η ≤ µ =⇒ η ≤ 1.µ, then,F is a fuzzy normal cone with
normal constant 1.
Now consider the functions T, S : X 7→ X defined by Tx = x2 and Sx = 1

2 . Let a1 = 1
50 ,a2 = 1

20 ,a3 =

1
30 ,a4 =

1
40 . Then, we have.

d1α (TSx, TSy) = |TSx− TSy|ek0 =

∣∣∣∣x24 − y2

4

∣∣∣∣ ek0
d1α (TSx, TSy) ≤

1

50
[|Tx− TSx|+ |Ty − TSy|] ek0 + 1

20

[|Tx− TSx||Ty − TSy|] ek0
|Tx− Ty|ek0

+
1

30

[|Tx− TSx||Ty − TSy|] ek0
[|Tx− Ty|+ |Tx− TSy|+ |Ty − TSx|] ek0

+
1

40

[|Tx− TSx||Tx− TSy|+ |Ty − TSx||Ty − TSy|] ek0
[|Tx− TSy|+ |Ty − TSx|] ek0
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d1α (TSx, TSy) ≤
1

50

[
d1α(Tx, TSx) + d1α(Ty, TSy)

]
+

1

20

d1α(Tx, TSx)d
1
α(Ty, TSy)

d1α(Tx, Ty)

+
1

30

d1α(Tx, TSx)d
1
α(Ty, TSy)

d1α(Tx, Ty) + d1α(Tx, TSy) + d1α(Ty, TSx)
+

1

40

d1α(Tx, TSx)d
1
α(Tx, TSy) + d1α(Ty, TSx)d

1
α(Ty, TSy)

d1α(Tx, TSy) + d1α(Ty, TSx)
(3.36)

Also,

d2α (TSx, TSy) ≤
1

50

[
|Tx− TSx

α
+

|Ty − TSy

α

]
ek0 +

1

20

[
|Tx−TSx|

α + |Ty−TSy|
α

]
ek0

|Tx−TSx|
α ek0

+
1

30

[
|Tx−TSx|

α
|Ty−TSy|

α

]
ek0[

|Tx−Ty|
α + |Tx−TSy|

α + |Ty−TSx|
α

]+
1

40

[
|Tx−TSx|

α
|Tx−TSy|

α + |Ty−TSx|
α

|Ty−TSy|
α

]
ek0[

|Tx−TSy|
α + |Ty−TSx|

α

]
ek0

d2α (TSx, TSy) ≤
1

50

[
d2α(Tx, TSx) + d2α(Ty, TSy)

]
+

1

20

d2α(Tx, TSx)d
2
α(Ty, TSy)

d2α(Tx, Ty)

+
1

30

d2α(Tx, TSx)d
2
α(Ty, TSy)

d2α(Tx, Ty) + d2α(Tx, TSy) + d2α(Ty, TSx)
+

1

40

d2α(Tx, TSx)d
2
α(Tx, TSy) + d2α(Ty, TSx)d

2
α(Ty, TSy)

d2α(Tx, TSy) + d2α(Ty, TSx)
(3.37)

From (3.36) and (3.37), we have

d (TSx, TSy) ≤ 1

50
[d(Tx, TSx) + d(Ty, TSy)] +

1

20

d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

+
1

30

d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty) + d(Tx, TSy) + d(Ty, TSx)
+

1

40

d(Tx, TSx)d(Tx, TSy) + d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy) + d(Ty, TSx)

Thus, S is a fuzzy cone T -type I contraction for 2a1 + a2 + a3 + a4 < 1.
Now, to show that S is a fuzzy T -type II contraction, Let a1 =

1
30 ,a2 =

1
10 ,a3 =

1
20 ,a4 =

1
40 .
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Then, we have

d1α (TSx, TSy) = |TSx− TSy|ek0 =

∣∣∣∣x24 − y2

4

∣∣∣∣ ek0
d1α (TSx, TSy) ≤

1

30

[∣∣∣∣(x2 − y2

4

)
−

(
y2 − x2

4

)∣∣∣∣] ek0 + 1

10

[∣∣∣(x2 − x2

4

)(
y2 − y2

4

)∣∣∣] ek0
|x2 − y2|ek0

+
1

20

[∣∣∣(x2 − x2

4

)(
y2 − y2

4

)∣∣∣] ek0[
|x2 − y2|+

∣∣∣(x2 − y2

4

)
−

(
y2 − x2

4

)∣∣∣] ek0
+

1

40

[∣∣∣(x2 − x2

4

)(
x2 − y2

4

)
−

(
y2 − x2

4

)(
y2 − y2

4

)∣∣∣] ek0[∣∣∣(x2 − y2

4

)
−

(
y2 − x2

4

)∣∣∣] ek0

d1α (TSx, TSy) ≤
1

30
[|Tx− TSy|+ |Ty − TSx|]ek0 + 1

10

[|Tx− TSx||Ty − TSy|]ek0
[|Tx− Ty|]ek0

+
1

20

[|Tx− TSx||Ty − TSy|]ek0
[[|Tx− Ty|]ek0 + |Tx− TSy|+ |Ty − TSx|] ek0

+
1

40

[|Tx− TSx||Tx− TSy|+ |Ty − TSx||Ty − TSy|] ek0
[|Tx− TSy|+ |Ty − TSx|] ek0

Implies

d1α (TSx, TSy) ≤
1

30

[
d1α (Tx, TSy) + d1α (Ty, TSx)

]
+

1

10

d1α (Tx, TSx) d
1
α (Ty, TSy)

d1α (Tx, Ty)

+
1

20

d1α (Tx, TSx) d
1
α (Ty, TSy)

d1α (Tx, Ty) + d1α (Tx, TSy) + d1α (Ty, TSx)

+
1

40

d1α (Tx, TSx) d
1
α (Tx, TSy) + d1α (Ty, TSx) d

1
α (Ty, TSy)

d1α (Tx, TSy) + d1α (Ty, TSx)
(3.38)

Also,

d2α (TSx, TSy) ≤
1

30

[
d2α (Tx, TSy) + d2α (Ty, TSx)

]
+

1

10

d2α (Tx, TSx) d
2
α (Ty, TSy)

d2α (Tx, Ty)

+
1

20

d2α (Tx, TSx) d
2
α (Ty, TSy)

d2α (Tx, Ty) + d2α (Tx, TSy) + d2α (Ty, TSx)

+
1

40

d2α (Tx, TSx) d
2
α (Tx, TSy) + d2α (Ty, TSx) d

2
α (Ty, TSy)

d2α (Tx, TSy) + d2α (Ty, TSx)
(3.39)
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From (3.38) and (3.39), we have

d (TSx, TSy) ≤ 1

30
[d (Tx, TSy) + d (Ty, TSx)] +

1

10

d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

+
1

20

d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty) + d (Tx, TSy) + d (Ty, TSx)

+
1

40

d (Tx, TSx) d (Tx, TSy) + d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy) + d (Ty, TSx)

Thus, S is a fuzzy cone T -type II contraction for 2a1 + a2 + a3 + a4 < 1.

Example 3.6. Consider E = C[0, 1] and F = {η ∈ E∗(I) : η ≥ 0̄} ⊂ E∗(I), X = R. Let d : X ×X 7→ E∗(I)
be a fuzzy mapping define by

d(x, y) = |x− y|ek0 , ek0 ∈ E

Where k0 is a fixed number in [0, 1] and the α-level set of d(x, y) are given by

[d(x, y)]α =

[
|x− y|ek0 . |x− y|ek0

α

]
, α ∈ (0, 1].

Then, the pair (X, d) is called a fuzzy cone metric space as in Example 3.5 and consider the functions
T, S : X 7→ X defined by Tx = x and Sx = x

2 . Clearly, T is one-one and continuous. Then, by Theorem 3.4,
v = 0 is the unique fixed point of S in X.

Corollary 3.7. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1 satisfying
the following

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]⊕ a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a3
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)

(3.40)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a4 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.8. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1 satisfying
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the following

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]⊕ a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a3
d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.41)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a3 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.9. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with normal
constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T -type I
contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1 satisfying
the following

d (TSx, TSy) ≤ a1 [d(Tx, TSx)⊕ d(Ty, TSy)]

⊕a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)
⊕ a3

d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.42)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a2 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.10. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
-type I contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)

⊕a2
d(Tx, TSx)d(Ty, TSy)

d(Tx, Ty)⊕ d(Tx, TSy)⊕ d(Ty, TSx)
⊕ a3

d(Tx, TSx)d(Tx, TSy)⊕ d(Ty, TSx)d(Ty, TSy)

d(Tx, TSy)⊕ d(Ty, TSx)

(3.43)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
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ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a1 = 0 in Theorem 3.3, we get the result immediately. □

Corollary 3.11. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
-type II contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]⊕ a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

⊕a3
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)⊕ d (Tx, TSy)⊕ d (Ty, TSx)

(3.44)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a4 = 0 in Theorem 3.4, we get the result immediately. □

Corollary 3.12. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
-type II contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]⊕ a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)

⊕a3
d (Tx, TSx) d (Tx, TSy)⊕ d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy)⊕ d (Ty, TSx)

(3.45)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a3 = 0 in Theorem 3.4, we get the result immediately. □

Corollary 3.13. Suppose (X, d) is a complete fuzzy cone metric space, F be a normal fuzzy cone with
normal constant K. Let T : X → X be a one-one continuous function and S : X → X be a fuzzy cone T
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-type II contraction mapping, that is, for all x, y ∈ X,Tx ̸= Ty and a1, a2, a3 ≥ 0 with 2a1 + a2 + a3 < 1
satisfying the following

d (TSx, TSy) ≤ a1 [d (Tx, TSy)⊕ d (Ty, TSx)]

⊕a2
d (Tx, TSx) d (Ty, TSy)

d (Tx, Ty)⊕ d (Tx, TSy)⊕ d (Ty, TSx)

⊕a3
d (Tx, TSx) d (Tx, TSy)⊕ d (Ty, TSx) d (Ty, TSy)

d (Tx, TSy)⊕ d (Ty, TSx)

(3.46)

Then, the following conditions are satisfied:
i. for every x0 ∈ X, limn→∞ d(TSnx0, TS

n+1x0) = 0̄;
ii. there exists v ∈ X such that limn→∞ TSnx0 = v;
iii. if T is sequentially convergent, then {Snx0} has a convergent subsequence;
iv. there is a unique u ∈ X such that Su = u;
v. if T is sequentially convergent, then for each x0 ∈ X the iterate sequence {Snx0} converges to u.

Proof. Let a2 = 0 in Theorem 3.4, we get the result immediately. □

4 Conclusion

The main findings of this study demonstrate applicability fuzzy cone metric spaces in establishing fixed point
theorems for fuzzy mappings. This study provides significant advancements in the understanding of fuzzy
cone metric spaces, with potential applications in differential equations and nonlinear Fredholm integral
equation. Future work could also explore the extension of this results to other types of fuzzy mappings and
their applications in real-world problems.
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