مروری بر نقش نانو مواد و نانو زیست مواد در فراوری منابع غذایی
محورهای موضوعی : تحقیقات در علوم مهندسی سطح و نانو موادسیامک حقی پور 1 , سعیده ابراهیمی اصل 2 , عاطفه بدر 3
1 - استادیار گروه مهندسی پزشکی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 - دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران
3 - دانشکده مهندسی مواد، دانشگاه صنعتی سهند، ایران
کلید واژه: نانو ذرات , نانو آفت کش ها , نانو کود, نانو ذرات فلزی, نانوتکنولوژی,
چکیده مقاله :
نانومواد به ذراتی با محدوده ابعاد 100-1 نانومترگفته میشود که نسبت سطح به حجم بالاتری نسبت به موارد حجیم دارند. با افزایش نسبت سطح به حجم، مواد میتوانند واکنش پذیرتر شوند. به همین جهت نانو ذرات دارای خواص فیزیکی و شیمیایی منحصر به فردی هستند که با خواص مواد حجیم متفاوت است. نانوتکنولوژی استفاده از ماده در مقیاس نزدیک به اتمی برای تولید ساختارها، مواد و وسایل جدید برای کاربرد در بسیاری از بخشها مانند پزشکی، انرژی و ... است که در این میان نانوتکنولوژی زیستی اصول بیولوژیکی را با خواص فیزیکی و شیمیایی مواد ترکیب میکند تا بتواند نانوذراتی با عملکردهای خاص تولید کند. از جمله این خواص میتوان به بهبود مقاومت دربرابر بیماریهای گیاهی، افزایش رشد گیاهان و استفاده کارآمد از مواد مغذی اشاره کرد. مواد زیستی در مقیاس نانو در زمینه صنایع غذایی میتوانند در تشخیص پاتوژن،در سیستمهای تصفیه آب، تولید افزودنیهای نانو در بستهبندیهای هوشمند نانو، کنترل و تحویل مواد مغذی ، نانو کپسولهسازی و تحویل ماده هدف به کار میرود که رشد عوامل بیماریزای ذخیره شده در مواد غذایی را به حداقل میرسانند. نانوذرات فلزی به دلیل برهمکنش الکترواستاتیکی، میتوانند فعالیتهای ضد باکتریایی و ضد قارچی خوبی از خود نشان دهند. نانو کودها ممکن است حاوی روی، سیلیس، آهن، دی اکسید تیتانیوم، نانو میلههای طلا و غیره باشند. نانولوله های کربنی و نانوذرات نقره و اکسید روی میتوانند در بهبود رشد گیاه بهکار روند. در نهایت نانوتکنولوژی زیستی فرآیندی آینده نگر است و به عنوان یک امنیت زیستی کشاورزی عمل می کند.
Nanomaterials are particles with a size range of 1-100 nm, which have a higher surface-to-volume ratio than bulk ones. As the surface-to-volume ratio increases, materials can become more reactive. For this reason, nanoparticles have unique physical and chemical properties that are different from the properties of bulk materials. Nanotechnology is the use of matter on a near-atomic scale to produce new structures, materials, and devices for use in many sectors such as medicine, energy, etc., in the meantime, biological nanotechnology combines biological principles with the physical and chemical properties of materials to can produce nanoparticles with specific functions. Among these properties, we can mention improving resistance against plant diseases, increasing plant growth, and efficient use of nutrients. Nano-scale biological materials in the field of the food industry can be used in the detection of pathogens, in water purification systems, the production of nano additives in nano smart packaging, the control and delivery of nutrients, nanoencapsulation, and delivery of the target substance that the growth of pathogenic agents stored in Minimize food. Due to electrostatic interaction, metal nanoparticles can show good antibacterial and antifungal activities. Nanofertilizers may contain zinc, silica, iron, titanium dioxide, gold nanorods, etc. Carbon nanotubes and silver and zinc oxide nanoparticles can be used to improve plant growth. Finally, bio-nanotechnology is a futuristic process and acts as an agricultural bio-security.
[1] E. Y. Lukianova-Hleb et al., Rainbow plasmonic nanobubbles: synergistic activation of gold nanoparticle clusters, J. nanomedicine \& Nanotechnol., 2)104)(2011)1.
[2] Z. H. Mohammad, F. Ahmad, S. A. Ibrahim, and S. Zaidi, Application of nanotechnology in different aspects of the food industry, Discov. Food, 2 (1)(2022)12.
[3] W. L. F. Armarego, Chapter 5 - Nanomaterials, in Purification of Laboratory Chemicals (Ninth Edition), Ninth Edit., W. L. F. Armarego, Ed. Butterworth-Heinemann, (2022)586–630.
[4] H. Chhipa, Applications of nanotechnology in agriculture, in Methods in microbiology, 46, Elsevier, (2019)115–142.
[5] K. Touré et al., Investigation of death cases by pesticides poisonning in a rural community, Bignona, Senegal, Epidemiol, 1 (105)(2011)1165–2161.
[6] D. M. Densilin, S. Srinivasan, P. Manju, and S. Sudha, Effect of individual and combined application of biofertilizers, inorganic fertilizer and vermicompost on the biochemical constituents of chilli (Ns-1701), J Biofertil Biopestici, 2 (106)(2011)2.
[7] N. S. El-Shenawy, B. El-Ahmary, and R. A. Al-Eisa, Mitigating effect of ginger against oxidative stress induced by atrazine herbicides in mice liver and kidney, J Biofertil Biopestici, 2 (2)(2011).
[8] S. Zamani, J. J. Sendi, and M. Ghadamyari, Effect of Artemisia Annua L, Asterales Asteraceae) Essent. Oil Mortality, Dev. Reprod. Energy Reserv. Plodia Interpunctella, (2011)2.
[9] S. S. Patil, U. U. Shedbalkar, A. Truskewycz, B. A. Chopade, and A. S. Ball, Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions, Environ. Technol. \& Innov., 5(2016)10–21.
[10] M. Kah and T. Hofmann, Nanopesticide research: current trends and future priorities, Environ. Int., 63(2014)224–235.
[11] L. R. Khot, S. Sankaran, J. M. Maja, R. Ehsani, and E. W. Schuster, Applications of nanomaterials in agricultural production and crop protection: a review, Crop Prot., 35(2012) 64–70.
[12] A. Bhattacharyya, P. Duraisamy, M. Govindarajan, A. A. Buhroo, and R. Prasad, Nano-biofungicides: emerging trend in insect pest control, Adv. Appl. through fungal nanobiotechnology, (2016)307–319.
[13] M. N. A. Hasaneen and A. M. Omer, Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil, 2016.
[14] J. S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, and S. Duhan, Nanotechnology: The new perspective in precision agriculture, Biotechnol. reports, 15(2017)11–23.
[15] S. Kumar, M. Nehra, N. Dilbaghi, G. Marrazza, A. A. Hassan, and K.-H. Kim, Nano-based smart pesticide formulations: Emerging opportunities for agriculture, J. Control. Release, 294(2019)131–153.
[16] N. Dey, D. Bhagat, D. Cherukaraveedu, and S. Bhattacharya, Utilization of red-light-emitting CdTe nanoparticles for the trace-level detection of harmful herbicides in adulterated food and agricultural crops, Chem. Asian J., 12(1)(2017) 76–85.
[17] C. O. Dimkpa, Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life, J. Basic Microbiol., 54 (9)(2014)889–904.
[18] P. Singh, Y.-J. Kim, D. Zhang, and D.-C. Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends Biotechnol., 34 (7)(2016)588–599.
[19] P. Marzbani, Y. M. Afrouzi, and A. Omidvar, The effect of nano-zinc oxide on particleboard decay resistance, Maderas. Cienc. y Tecnol., 17 (1)(2015)63–68.
[20] S. P. Rajendran and K. Sengodan, Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent, J. Nanosci., (2017)2017.
[21] Y. M. Afrouzi, P. Marzbani, and A. Omidvar, The effect of moisture content on the retention and distribution of nano-titanium dioxide in the wood, Maderas. Cienc. y Tecnol., 17 (2)(2015)385–390.
[22] K. Shankramma, S. Yallappa, M. B. Shivanna, and J. Manjanna, Fe 2 O 3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization, Appl. Nanosci., 6(2016)983–990.
[23] D. Lin and B. Xing, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 150 (2)(2007)243–250.
[24] A. I. Ahmed, D. R. Yadav, and Y. S. Lee, Applications of nickel nanoparticles for control of Fusarium wilt on lettuce and tomato, Int. J. Innov. Res. Sci. Eng. Technol, 5(5)(2016)7378–7385.
[25] B. Kim, D. Kim, D. Cho, and S. Cho, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, 52 (1)(2003)277–281.
[26] H. R. Madan et al., Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 152(2016)404–416.
[27] P. Gajjar, B. Pettee, D. W. Britt, W. Huang, W. P. Johnson, and A. J. Anderson, Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440, J. Biol. Eng., 3(2009)1–13.
[28] N. Begum, B. Sharma, and R. S. Pandey, Evaluation of insecticidal efficacy of Calotropis procera and Annona squamosa ethanol extracts against Musca domestica, J. Biofertilizers \& Biopestic., 1 (1)(2010) 2–6.
[29] A. P. Anwunobi and M. O. Emeje, Recent applications of natural polymers in nanodrug delivery, J Nanomedic Nanotechnol S, 4 (002)(2011).
[30] M. Caraglia, G. DE ROSA, A. Abbruzzese, C. Leonetti, and others, Nanotechnologies: new opportunities for old drugs. The case of Aminobisphosphonates, J. Nanomedicine \& Biother. Discov., 1(1)(2011)1–2.
[31] S. Höglund, Some electron microscopic studies on the satellite tobacco necrosis virus and its IgG-antibody, J. Gen. Virol., 2 (3)(1968)427–436.
[32] J. M. Rajwade, R. G. Chikte, and K. M. Paknikar, Nanomaterials: new weapons in a crusade against phytopathogens, Appl. Microbiol. Biotechnol., 104(4)(2020)1437–1461.
[33] M. Eleftheriadou, G. Pyrgiotakis, and P. Demokritou, Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality, Curr. Opin. Biotechnol., 44(2017)87–93.
[34] A. Martirosyan and Y.-J. Schneider, Engineered nanomaterials in food: implications for food safety and consumer health, Int. J. Environ. Res. Public Health, 11(6)(2014)5720–5750).
[35] M. Ghaani, N. Nasirizadeh, S. A. Y. Ardakani, F. Z. Mehrjardi, M. Scampicchio, and S. Farris, Development of an electrochemical nanosensor for the determination of gallic acid in food, Anal. Methods, 8(5)(2016)1103–1110.
[36] M. Ghaani, C. A. Cozzolino, G. Castelli, and S. Farris, An overview of the intelligent packaging technologies in the food sector, Trends Food Sci. \& Technol., 51(2016)1–11.
[37] I. Katouzian and S. M. Jafari, Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins, Trends Food Sci. \& Technol., 53(2016)34–48.
[38] M. A. Ansari, Nanotechnology in Food and Plant Science: Challenges and Future Prospects, Plants, 12(13)(2023).
[39] A. V. A. Mariadoss et al., Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line, Microb. Pathog., 135(2019)103609.
[40] F. M. P. Tonelli and F. C. P. Tonelli, Chapter 10 - Biocompatibility of green synthesized nanomaterials, in Synthesis of Bionanomaterials for Biomedical Applications, M. Ozturk, A. Roy, R. A. Bhat, F. Vardar-Sukan, and F. M. Policarpo Tonelli, Eds. Elsevier, (2023)209–223.
[41] C. O. Adetunji et al., Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Handb. Nanomater. Nanocomposites Energy Environ. Appl. )November, 2020.
[42] A. Y. Ghidan, T. M. Al-Antary, and A. M. Awwad, Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid, Environ. Nanotechnology, Monit. Manag., 6(2016)95–98.
[43] D. An, Y. Li, X. Lian, Y. Zou, and G. Deng, Synthesis of porous ZnO structure for gas sensor and photocatalytic applications, Colloids Surfaces A Physicochem. Eng. Asp., 447(2014)81–87, 2014.
[44] M. Ramesh, M. Anbuvannan, and G. Viruthagiri, Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 136(2015)864–870, 201.
[45] C. R. Chinnamuthu and P. M. Boopathi, Nanotechnology and Agroecosystem, Madras Agric. Journa, 96 (June)(2009)17–31.
[46] A. G. Ingale and A. N. Chaudhari, Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach, J Nanomed Nanotechol, 4 (165)(2013)1–7.
[47] V. K. Sharma, R. A. Yngard, and Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145(1–2)(2009)83–96.
[48] M. Amil Usmani et al., Current trend in the application of nanoparticles for waste water treatment and purification: a review, Curr. Org. Synth., 14 (2)(2017)206–226.
[49] C. Pandit et al., Biological agents for synthesis of nanoparticles and their applications, J. King Saud Univ. - Sci., 34 (3)(2022)101869.
[50] A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry, Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp., J. Biomed. Nanotechnol., 1 (1)(2005)47–53.
[51] E. Flajollet, Vers la compréhension du fonctionnement des consortia microbiens lignocellulolytiques : contribution des approches méta-omiques et biostatistiques, (2022)312.
[52] H. Yu, J.-Y. Park, C. W. Kwon, S.-C. Hong, K.-M. Park, and P.-S. Chang, An Overview of Nanotechnology in Food Science: Preparative Methods, Practical Applications, and Safety, J. Chem., 2018(2018)5427978.
[53] B. Pérez-López and A. Merkoçi, Nanomaterials based biosensors for food analysis applications, Trends Food Sci. Technol., 22 (11))(2011)625–639.
[54] F. Guo, S. Aryana, Y. Han, and Y. Jiao, A Review of the Synthesis and Applications of Polymer–Nanoclay Composites, Appl. Sci., 8 (9)(2018).
[55] C. Curuțiu, L. M. Dițu, A. M. Grumezescu, and A. M. Holban, Polyphenols of Honeybee Origin with Applications in Dental Medicine, Antibiotics, 9 (12)(2020).
[56] M. Ghorbanpour, P. Bhargava, A. Varma, and D. K. Choudhary, Biogenic nano-particles and their use in agro-ecosystems. 2020.
[57] G. Chugh, K. H. M. Siddique, and Z. M. Solaiman, Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges, Sustainability, 13 (4)(2021).