تأثیر مواد مغذی بر بهبود رشد و کیفیت گیاهان دارویی و افزایش توان جسمانی ورزشکاران
محورهای موضوعی : طب سنتیپریسا هاشمی شهرکی 1 , شهلا هاشمی شهرکی 2 *
1 - گروه تربیت بدنی و علوم ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، شهرکرد، ایران
2 - گروه زیست شناسی،دانشکده علوم، دانشگاه سيستان و بلوچستان، زاهدان، ایران
کلید واژه: مواد مغذی, گیاهان دارویی, ورزشکاران, ترکیبات ثانویه,
چکیده مقاله :
آلودگی در سالهای اخیر گیاهان دارویی و معطر به واسطه دارا بودن ترکیبات فیتوشیمیایی متنوع از جمله فلاونوئیدها، آلکالوئیدها، ترپنوئیدها و فنولیکها، در حوزه تغذیه ورزشی مورد توجه قرار گرفتهاند. این ترکیبات میتوانند با اثرات آنتیاکسیدانی و ضدالتهابی، استرس اکسیداتیو ناشی از تمرینات شدید را کاهش دهند، بازتوانی را تسریع کنند و عملکرد ورزشی را افزایش دهند. با این حال، میزان و کیفیت این ترکیبات در گیاهان دارویی وابسته به شرایط اکولوژیکی و تغذیهای است. عواملی مانند نوع خاک، شدت نور، میزان آبیاری و دسترسی به عناصر معدنی در طول رشد گیاه در سنتز و تجمع متابولیتهای ثانویه نقش مهمی دارند. افزایش تمایل به منابع طبیعی و مکملهای گیاهی در سالهای اخیر عمدتاً به دلیل توانایی آنها در کاهش استرس اکسیداتیو، تقویت سیستم ایمنی و تسریع روند بازتوانی پس از فعالیتهای شدید بدنی است. پژوهش حاضر با رویکردی مروری، به بررسی ارتباط میان تغذیه معدنی گیاهان دارویی، عوامل اکولوژیک مؤثر بر کیفیت ترکیبات ثانویه، و اثرات این گیاهان بر شاخصهای فیزیولوژیک ورزشکاران میپردازد. شواهد موجود نشان میدهند که شرایط زراعی از جمله نوع خاک، شدت نور، وضعیت آبیاری و میزان مواد مغذی، به شکل چشمگیری بر الگوی سنتز و تجمع متابولیتهای ثانویه تأثیرگذار هستند. برای نمونه، نیتروژن و گوگرد در افزایش تولید آلکالوئیدها و ترکیبات گوگرددار نقش محوری دارند، در حالی که کمبود نیتروژن اغلب موجب افزایش تولید فنولیکها و فلاونوئیدها میشود. این تغییرات نه تنها کیفیت دارویی گیاه را تحت تأثیر قرار میدهند، بلکه در صورت مصرف هدفمند میتوانند به بهبود ظرفیت آنتیاکسیدانی، کاهش التهاب عضلانی، افزایش استقامت و ارتقای عملکرد هوازی ورزشکاران کمک نمایند. به طور خاص، گیاهانی مانند انگور، انار به دلیل وجود ترکیبات آنتیاکسیدانی و اثرات متابولیک سودمند، جایگاه ویژهای در تغذیه ورزشی یافتهاند. در نهایت، یافتهها بیانگر آن است که مدیریت بهینه تغذیهای و زراعی، همراه با بهرهگیری از مکملهای گیاهی، میتواند رویکردی ایمن و کارآمد برای ارتقای سلامت و بهبود توانمندی ورزشکاران محسوب شود..
In recent years, medicinal and aromatic plants have attracted considerable attention in the field of sports nutrition due to their diverse phytochemical constituents, including flavonoids, alkaloids, terpenoids, and phenolics. These compounds can reduce oxidative stress induced by intense exercise, accelerate recovery, and enhance athletic performance through their antioxidant and anti-inflammatory properties. However, the quantity and quality of these phytochemicals in medicinal plants are highly dependent on ecological and nutritional conditions. Factors such as soil type, light intensity, irrigation levels, and mineral nutrient availability during plant growth play a crucial role in the synthesis and accumulation of secondary metabolites. The growing preference for natural sources and herbal supplements in recent years is largely attributed to their ability to mitigate oxidative stress, strengthen the immune system, and expedite recovery following intense physical activity. The present review investigates the relationship among mineral nutrition of medicinal plants, ecological factors influencing the quality of secondary metabolites, and the physiological effects of these plants on athletes. Existing evidence indicates that agronomic conditions including soil type, light intensity, irrigation regime, and nutrient availability significantly influence the synthesis and accumulation patterns of secondary metabolites. For instance, nitrogen and sulfur play pivotal roles in the production of alkaloids and sulfur-containing compounds, whereas nitrogen deficiency often enhances the synthesis of phenolics and flavonoids. These variations not only affect the medicinal quality of the plants but, when used strategically, can also improve antioxidant capacity, reduce muscle inflammation, increase endurance, and enhance aerobic performance in athletes. Notably, plants such as grape and pomegranate have gained special recognition in sports nutrition due to their potent antioxidant compounds and beneficial metabolic effects. Ultimately, the findings suggest that optimal agronomic and nutritional management, combined with the targeted use of herbal supplements, can serve as a safe and effective strategy to promote athlete health and enhance physical performance
1. Ribeiro GdJG, De Souza EE, Palmisano G, Durigon EL, Liebau E, Wrenger C. Plant-derivate extracts and natural products with antiviral activity. Frontiers in Virology. 2025;5:1632734.
2. Karalija E, Macanović A, Ibragić S. Revisiting Traditional Medicinal Plants: Integrating Multiomics, In Vitro Culture, and Elicitation to Unlock Bioactive Potential. Plants. 2025;14(13):2029.
3. Babar SS, Jawad Z, Ayub F, Khan MI. Principles of Drug Discovery from Plants. Herbal Pharmacopeia: CRC Press; 2025. p. 65-88.
4. Marconi GR, Osser B, Osser G, Miuța CC, Toth C, Ardelean VP, et al. Assessing nutritional knowledge and physical health among football players: A pilot study from three sports clubs in Western Romania. Sports. 2025;13(1):16.
5. Baydas G, Uca M, Nedzvetsky VS, Nedzvetsky VS, Nedzvetsky V, Nedzvetsky V, et al. Phytotherapy: Considerations for athletes and athletic trainers. 2024.
6. Winterstein AP, Storrs CM. Herbal supplements: considerations for the athletic trainer. Journal of athletic training. 2001 Oct;36(4):425.
7. Özdemir K, Demir Y. Phenolic Compounds in Exercise Physiology: Dual role in oxidative stress and recovery adaptation. Food Science & Nutrition. 2025;13(8):e70714.
8. Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The use of some polyphenols in the modulation of muscle damage and inflammation induced by physical exercise: a review. Foods. 2023;12(5):916.
9. Sellami M, Slimeni O, Pokrywka A, Kuvačić G, D Hayes L, Milic M, et al. Herbal medicine for sports: a review. Journal of the International Society of Sports Nutrition. 2018;15(1):14.
10. Morgan MJ, Liu Z-g. Crosstalk of reactive oxygen species and NF-κB signaling. Cell research. 2011;21(1):103-15.
11. Prinsloo G, Nogemane N. The effects of season and water availability on chemical composition, secondary metabolites and biological activity in plants. Phytochemistry Reviews. 2018;17(4):889-902.
12. Pandey N. Role of plant nutrients in plant growth and physiology. Plant nutrients and abiotic stress tolerance: Springer; 2018. p. 51-93.
13. Shahraki SH, Javar FM, Jamali B, sargazi F. Beneficial role of Coronatine on the morphological and physiological responses of Cress Plants (Lepidium sativum) exposed to Silver Nanoparticle. Botanical Studies. 2024;65(1):17.
14. Hashemi S, Asrar Z, Pourseyedi S, Nadernejad N. Investigation of ZnO nanoparticles on proline, anthocyanin contents and photosynthetic pigments and lipid peroxidation in the soybean. IET Nanobiotechnology. 2019;13(1):66-70.
15. Rengel Z. Availability of Mn, Zn and Fe in the rhizosphere. Journal of soil science and plant nutrition. 2015;15(2):397-409.
16. Prabhudev SH, Ravindra KN, Supreetha BH, Nithyanandha KR, Dharmappa KK, Giresha AS. Effect of soil pH on plants growth, phytochemical contents and their antioxidant activity. Journal of advanced applied scientific research. 2023 Sep 14;5(5).
17. Mudau HS, Mokoboki HK, Ravhuhali KE, Mkhize Z. Effect of soil type: Qualitative and quantitative analysis of phytochemicals in some browse species leaves found in savannah biome of South Africa. Molecules. 2022;27(5):1462.
18. Xu Y, Wang G, Cao F, Zhu C, Wang G, El-Kassaby YA. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.). New forests. 2014;45(6):765-76.
19. Mohd Yusof FF, Yaacob JS, Osman N, Ibrahim MH, Wan-Mohtar WAAQI, Berahim Z, et al. Shading effects on leaf gas exchange, leaf pigments and secondary metabolites of Polygonum minus Huds., an aromatic medicinal herb. Plants. 2021;10(3):608.
20. Takshak S, Agrawal Sá. Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant. Journal of Photochemistry and Photobiology B: Biology. 2014;140:332-43.
21. Kapoor S, Raghuvanshi R, Bhardwaj P, Sood H, Saxena S, Chaurasia OP. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. Journal of Photochemistry and Photobiology B: Biology. 2018; 183:258-65.
22. Takshak S, Agrawal SB. Anatomical changes linked performance of two indigenous medicinal plants, Withania Somnifera Dunal and Coleus Forskohlii Briq. Exposed to Supplemental Ultraviolet-B Radiation. 2017.
23. Kumari R, Agrawal SB. Supplemental UV‐B induced changes in leaf morphology, physiology and secondary metabolites of an Indian aromatic plant Cymbopogon citratus (DC) Staph under natural field conditions. International Journal of Environmental Studies. 2010;67(5):655-75.
24. Chrysargyris A, Petropoulos SA, Tzortzakis N. Essential oil composition and bioactive properties of lemon balm aerial parts as affected by cropping system and irrigation regime. Agronomy. 2022;12(3):649.
25. Paul A, Acharya K, Chakraborty N. Involvement of phenylpropanoid pathway and shikimic acid pathway in environmental stress response. Biology and biotechnology of environmental stress tolerance in plants: Apple Academic Press; 2023. p. 27-66.
26. Maleki M, Shojaeiyan A, Mokhtassi-Bidgoli A. Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery. BMC Plant Biology. 2024;24(1):161.
27. Alinian S, Razmjoo J, Zeinali H. Flavonoids, anthocynins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Industrial Crops and Products. 2016;81:49-55.
28. Bettaieb I, Zakhama N, Wannes WA, Kchouk ME, Marzouk B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia horticulturae. 2009;120(2):271-5.
29. Mosa KA, Ali MA, Ramamoorthy K, Ismail A. Exploring the relationship between plant secondary metabolites and macronutrient homeostasis. Plant Nutrition and Food Security in the Era of Climate Change: Elsevier; 2022. p. 119-46.
30. Li D, Zhang T, Yu H, Li Y, Lv T, Yu D, Liu C. The impacts of different nitrogen supply on root traits, root exudates, and soil enzyme activities of exotic and native plant communities. Plant and Soil. 2025 Mar;508(1):209-26.
31. Francioso A, Baseggio Conrado A, Mosca L, Fontana M. Chemistry and biochemistry of sulfur natural compounds: key intermediates of metabolism and redox biology. Oxidative Medicine and Cellular Longevity. 2020;2020(1):8294158.
32. Yokoyama R. Evolution of aromatic amino acid metabolism in plants: a key driving force behind plant chemical diversity in aromatic natural products. Philosophical Transactions B. 2024;379(1914):20230352.
33. Rawat J, Pandey N, Saxena J. Role of potassium in plant photosynthesis, transport, growth and yield. Role of potassium in abiotic stress. 2022:1-14.
34. Bell Bell PG, McHugh MP, Stevenson E, Howatson G. The role of cherries in exercise and health. Scandinavian journal of medicine & science in sports. 2014;(3):477-90.
35. Zuzarte M, Girão H, Salgueiro L. Aromatic plant-based functional foods: A natural approach to manage cardiovascular diseases. Molecules. 2023;28(13):5130.
36. Arenas-Jal M, Suñé-Negre JM, Pérez-Lozano P, García-Montoya E. Trends in the food and sports nutrition industry: A review. Critical reviews in food science and nutrition. 2020;60(14):2405-21.
37. Miransari M, Adham S, Miransari M, Miransari AA. The effects of nutrients on the growth and quality of medicinal and aromatic plants, affecting athletic abilities. Journal of Trace Elements and Minerals. 2025;11:100205.
38. Tan JM. Maximizing athletic performance: The role of nutrition in elite sports. Revista de Psicología del Deporte (Journal of Sport Psychology). 2024;33(2):129-38.
39. Ingegneri M, Smeriglio E, Zebbiche Y, Cornara L, Visalli L, Smeriglio A, et al. The dark side of “smart drugs”: Cognitive enhancement vs. clinical concerns. Toxics. 2025;13(4):247.
40. Tang F, Yan H-L, Wang L-X, Xu J-F, Peng C, Ao H, et al. Review of natural resources with vasodilation: traditional medicinal plants, natural products, and their mechanism and clinical efficacy. Frontiers in pharmacology. 2021;12:627458.
41. Elejalde E, Villarán MC, Alonso RM. Grape polyphenols supplementation for exercise-induced oxidative stress. Journal of the International Society of Sports Nutrition. 2021;18(1):3.
42. Altanam SY, Darwish N, Bakillah A. Exploring the interplay of antioxidants, inflammation, and oxidative stress: mechanisms, therapeutic potential, and clinical implications. Diseases. 2025;13(9):309.
43. Nie W, Li J, Rajabi S. Molecular Mechanisms, Endurance athlete, and synergistic therapeutic effects of marine‐derived antioxidant astaxanthin supplementation and exercise in cancer, metabolic diseases, and healthy individuals. Food Science & Nutrition. 2025;13(7):e70470.
44. Ma Y-T, Li C, Shen Y, You W-H, Han M-X, Mu Y-F, et al. Mechanisms of the JNK/p38 MAPK signaling pathway in drug resistance in ovarian cancer. Frontiers in Oncology. 2025;15:1533352.
45. Urbaniak A, Skarpańska-Stejnborn A. Effect of pomegranate fruit supplementation on performance and various markers in athletes and active subjects: A systematic review. International Journal for Vitamin and Nutrition Research. 2019.
46. de Lima Tavares Toscano L, Silva AS, de França ACL, de Sousa BRV, de Almeida Filho EJB, da Silveira Costa M, et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. European journal of nutrition. 2020;59(7):2997-3007.
47. Sciberras JN, Galloway SDR, Fenech A, Grech G, Farrugia C, Duca D, et al. The effect of turmeric (Curcumin) supplementation on cytokine and inflammatory marker responses following 2 hours of endurance cycling. Journal of the International Society of Sports Nutrition. 2015;12(1):5.