مقایسه شدت بيماري¬زايي جدايه¬هاي Botrytis cinerea جمع¬آوري شده از ميزبان-هاي سبزي و صيفي در منطقه ورامين و مقاومت آنها به قارچ¬کش¬های متداول
محورهای موضوعی : بیماری شناسی گیاهیهانیه ظفر 1 * , وحید زرین نیا 2
1 -
2 - هیات علمی گروه گیاه پزشکی دانشگاه آزاد واحد علوم و تحقیقات تهران
کلید واژه: کپك خاکسترى, مورفولوژى, مقاومت سموم,
چکیده مقاله :
بيمارى كپك خاكسـترى با عامل قارچی Botrytis cinerea (tel: Botryotinia fuckeliana)، در قسـمت انتهايي دم ميوه (دمگاه) گیاهان سبزی و صیفی رشـد ميكند. عامل بيمارى به صـورت (اسـكلروت) در خاك، ميسـليوم در بقاياى آلوده گياهي و همچنين بهصـورت اسـپورهاى غير جنسـي در هوا بقاء خود را حفظ ميكند. اين قارچ پليفاژ در محصـولات سـبزى و صـيفي گلخانه ای مانند گوجهفرنگي، فلفل، خيار و بادمجان تحت شـرايط هواى خنك و مرطوب بيمارى ايجاد ميكند. در اين پژوهش، نمونهبردارى طی سالهاى 94-١٣٩3 از گلخانههاى منطقه ورامين انجام و شناسايي قارچ Botrytis cinerea در محيط كشت اختصاصي BSM صـورت گرفت. به منظور بررسي مورفولوژى قارچ، سـاختار پرگنه، شـكل كنيدى، تيپ ريسـهها و اسـپور و اسـكلروت مطالعه شد. تنوع پراكندگي اين قارچ در سـطح كلنيها در محيط كشـت و اثرات مقاومت به سه سـم بنومیل، كاربندازيم و فنهگزاميد با ايجاد گروههاى مختلف قارچ B. cinerea بررسی گردید. همبستگی دادههاى بهدسـت آمده در نرم افزار SPSS مورد ارزيابي قرار گرفت. نتايج آناليز دادهها نشــان داد كه اين قارچ داراى تنوع مورفولوژى و مقاومتي قابل ملاحظهای در شهرستان ورامین است كه در تولید ارقام سبزى و صيفي مقاوم نسـبت به بيمارى پوسـيدگي خاكسـترى و همچنين ارزيابي ميزان تنوع موجود در مورفولوژى قارچ و خصوصيات بيماريزايي اين قارچ در نواحي ورامين و مناطق مشابه با جغرافياي منطقه ورامين استفاده خواهد شد.
The gray mold disease of Botrytis cinerea (tel: Botryotinia fuckeliana), in the end part of the tail of the soft and watery fruit, turns green and shriveled. The disease agent maintains its survival in the form of sclerotia in the soil, mycelium in contaminated plant residues, and also in the form of asexual spores in the air. This polyphagous fungus causes disease in vegetable and summer greenhouse products such as tomatoes, peppers, cucumbers and eggplants under cool and humid conditions. In this research, sampling was done during 2013-2014 from the greenhouses of Varamin region and identification of Botrytis cinerea fungus was done in BSM special culture medium. In order to study the morphology of the fungus, the structure of the progeny, the shape of the conidia, the type of filaments, and the spores and sclerotia were studied. The distribution pattern of this fungus on the surface of the colonies in the culture medium and the effects of resistance to the three fungicides benomyl, carbendazim and fenhexamid were investigated by creating different groups of B. cinerea. The correlation of the obtained data was evaluated in SPSS software. The results of the data analysis showed that this pathogen has a considerable morphological diversity and resistance in Varamin city, which is useful in the production of vegetable and summer cultivars resistant to gray rot disease, as well as evaluating the diversity in fungus morphology and disease-causing characteristics of this pathogen in Varamin areas, and similar areas to the geography of Varamin region will be used.
امینی، ر. و ابرین¬بنا، م. 1395. مقاومت برخی جدایه¬های Botrytis cinerea نسبت به قارچ¬کش¬های بنومیل، ایپرودیون و فن¬هگزامید در استان آذربایجان غربی. پژوهش¬های کاربردی در گیاه¬پزشکی 5(1): 195-207.
الهي نيا، ع. ١٣٨٤. بيماري¬هاى سبزى و صيفي و روش¬هاى مبارزه با آنها. چاپ اول، انتشارات دانشگاه گيلان، رشت.
Abbey, J.A., Alzohairy, S.A., Neugenauer, K.A., Hatlen, R.J. and Miles, T.D. 2024. Fungicide resistance in Botrytis cinerea and identification of Botrytis species associated with blueberry in Michigan. Frontiers in Microbiology 15: 1425392. https://doi.org/10.3389/fmicb.2024.1425392.
Amini, M.M., Mirzaei, S. and Heidari, A. 2023. A growing threats threat: investigating the high incidence of benzimidazole fungicides resistance in Iranian Botrytis cinerea isolates. PLos One 18(11): e0294530.
Beever, R.E. and Weeds, P.L. 2004 Taxonomy and Genetic Variation of Botrytis and Botryotinia. Pp: 29-52. In: Elad, Y., Williamson, B., Tudzynski, P. and Delan, N. (Eds.). Botrytis: Biology, Pathology and Control, Kluwer Academic Publishers, Dordrecht,
Cheung, N., Tian, L., Liu, X. and Li, X. 2020. The destructive fungal pathogen Botrytis cinerera-insights from genes studied with mutant analysis. Pathogens 9(11): 923.
Chilvers, M.I. and du Toit, L.J. 2006. Detection and identification of Botrytis species associated with neck rot, scape blight, and umbel blight of onion. Online. Plant Health Progress; https://doi.org/10.1094/PHP-2006-1127-01-DG .
Delc´an, J. and Melgarejo, P. 2002. Mating behaviour and vegetative compatibility in Spanish populations of Botrytotinia fuckeliana. European Journal of Plant Pathology 108: 391-400.
Ebrahimzadeh, F. and Abrinbana, M. 2019. Activity of fungicide mixtures against Botrytis cinerea isolates resistant to benzimidazoles, strobilurins and dicarboximides. Annals of Applied Biology 174(3): 301-312.
Edwards, S.G. and Seddon, B. 2001.Selective media for the specific isolation of Botrytis cinerea. Letters in Applied Microbiology 32: 63-66.
Elad, Y. Williamson, B. Tudzynski, P. and Delen, N. 2007. Botrytis spp. and diseases they cause in agricultural systems: an introduction. In: Elade, Y., Williamson, P., Tudzinski, P. and Delen. N. Botrytis: Biology, Pathology and control. Springer Publishers. http://dx.doi.org/10.1007/978-1-4020-2626-3_1.
Fournier, E., Giraud, T., Loiseau, A., Vautrin, D., Estoup, A., Solignac, M., Cornuet, J.M. and Brygoo, Y. 2002. Characterization of nine polymorphic microsatellite loci in the fungus Botrytis cinerea (Ascomycota). Molecular Ecology Notes 2(3): 253-255.
Giraud, T., Fortini, D., Levis, C., Leroux, P. and Brygoo, Y. 1997. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species. Molecular Biology Evolution 14:1177-1185.
He, L., Cui, K., Li, T., Song, Y., Liu, N., Mu, W. and Liu, F. 2020. Evolution of the resistance of Botrytis cinerea to carbendazim and the current efficacy of carbendazim against gray mold after long-term discontinuation. Plant Disease 104(6): 1647-1653.
Hyde, K.D., Balrdin, P., Chen, Y., Thilini Chethana, K.W., De Hoog, S., Doilom, M., de Farias, A.R.G., Gonçalves, M.F., Gonkhom, D., Gui, H. and Hilário, S. 2024. Current trends, limitations and future research in the fungi? Fungal Diversity 125: 1-71.
Isaza, L., Zuluaga, Y.P. and Marulanda, M.L. 2019. Morphological, pathogenic and genetic diversity of Botrytis cinerea Pers. In blackberry cultivations in Colombia. Revista Brasileira de Fruticultura 41(6). https://doi.org/10.1590/0100-29452019490.
Korolev, N., Elad, Y. and Katan, T. 2008. Vegetative compatibility grouping in Botrytis cinerea using sulphate non- utilizing mutant. European Journal of Plant Pathology 122: 369-383.
Martinez, F., Dubos, B. and Fermaud, M. 2005. The role of saprotrophy and virulence in the population dynamics of Botrytis cinerea in vineyards. Phytopathology 95: 692-700.
Meng, L., Mestdagh, H., Ameye, M., Audenaert, K., Hofte, M. and van Labeke, M.C. 2020. Phenotypic variation of Botrytis cinerea isolates is influenced by spectral light quality. Frontiers in Plant Science 11: 1233.
Mirzaei, S., Mohammadi Goltapeh, E., Shams-Bakhsh, M., Safaie, N. and Chaichi, M. 2009. Genetic and phenotypic diversity among Botrytis cinerea isolates in Iran. Journal of Phytopathology 157(7-8): 474-482.
Naranjo-Ortiz, M.A. and Gabaldon, T. 2020. Fungal evolution: cellular, genomic and metabolic complexity. Biological Reviews of the Cambridge Philosophical Society 95(5): 1198-1232.
Notte, A.M., Plaza, V., Marambio-Alvarado, B., Olivares-Urbina, L., Poblete-Morales, M., Silva-Moreno, E. and Castillo, L. 2021. Molecular identification and characterization of Botrytis cinerea associated to the endemic flora and semi-desert climate in Chile. Current Research in Microbial Sciences 2: 100049
O'Neill, T.M., Shtienberg, D. and Elad, Y. 1997. Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Disease 81(1): 36-40.
Pesic, B., Hrustic, J., Mihajlovic, M., Grahovac, M. and Delibasic, G. 2014. Botrytis cinerea in raspberry in Serbia: morphological and molecular characterization. Pesticidi I Fitomedicina 29: 237-247.
Porquier, A., Tisserant, C., Salinas, F., Glassi, C., Wange, L., Enard, W., Hauser, A., Hahn, M. and Weiberg, A. 2021. Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea, Genome Biology 22: 225. https://doi.org/10.1186/s13059-021-02446-4.
Rupp, S., Weber, R.W.S., Rieger, D., Detzel, P. and Hahn, M. 2017. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Frontiers in Microbiology 7: 2075. http://dx.doi.org/10.3389/fmicb.2016.02075.
Sautua, F.J., Baron, C., Perez-Hernandez, O.P. and Carmona, M.A. 2019. First report of resistance to carbendazim and procymidone in Botrytis cinerea from strawberry, blueberry and tomato in Argentina. Crop Protection 125. https://doi.org/10.1016/j.cropro.2019.104879.
Staats, M., van Baarlen, P. and van Kan, J.A.L. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution 22(2): 333-346.
Stall, R.E. 1991. Gray Mold. Pp. 16-17. In: Jones, J.B., Jones, J.P., Stall, R.E. and Zitter, T.A. (eds.). Compendium of Tomato Diseases. American Phytopathological Society Press, st. Paul, M.N.
Steentjes, M.B.F., Scholten, O.E. and van Kan, J.A.L. 2021. Peeling the onion: towards a better understanding of Botrytis disease of onion. Phytopathology 111(3): 464-473.
Tanovic, B. and Ivanovic, M. 2010. First report of occurrence of benomyl resistance in Botrytis cinerea isolates on raspberry in Serbia. 94(4): 486. https://doi.org/10.1094/pdis-94-4-0486c.
Wessels, B.A. 2012. Genetic characterization and fungicide resistance profiles of Botrytis cinerea in rooibos nurseries and pear orchards in the Western Cape of South Africa. Master’s thesis, Stellenbosch University, South Africa.
Williamson, B. Tudzynski, B. Tudzynski, P. and Van Kan, J.A.L. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8: 561-580.