بررسی رفتار اکسیداسیون و الکتریکی فولاد AISI 304 پوشش داده شده با کبالت برای کاربرد پیل های سوختی اکسید جامد
محورهای موضوعی : خوردگی و حفاظت موادمحمد رضا عاشور زاده 1 , مرتضی زند رحیمی 2 , هادی ابراهیمی فر 3
1 - بخش مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان،
2 - بخش مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان
3 - بخش مهندسی مواد،دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران
کلید واژه: پوشش, پیل سوختی اکسید جامد, اکسیداسیون, مقاومت سطحی ویژه (ASR), فولاد زنگ نزن آستنیتی 304 AISI,
چکیده مقاله :
مقاومت به اکسیداسیون و هدایت الکتریکی فولادهای زنگ نزن مورد استفاده به عنوان صفحات اتصال دهنده در پیل های سوختی اکسید جامد را می توان با استفاده از یک لایه پوشش رسانا و محافظ بهبود داد. در این پژوهش فولاد زنگ نزن آستنیتی AISI 304 در یک مخلوط پایه پودری کبالت به روش سمانتاسیون فشرده پوشش داده شد. از تست اکسیداسیون همدما برای بررسی مقاومت به اکسیداسیون نمونه های پوشش دار و بدون پوشش استفاده شد. همچنین ASR به عنوان تابعی از زمان اکسیداسیون همدما در دمای ºC800 اندازه گیری شد. میکروساختار لایه پوشش و نمونه های اکسید شده توسط میکروسکوپ الکترونی SEM و دستگاه پراش پرتو ایکس بررسی شد. نتایج نشان داد که نمونه های پوشش داده شده با کبالت مقاومت به اکسیداسیون بهتری نسبت به نمونه های بدون پوشش از خود نشان دادند. نتایج نشان داد که افزایش زمان موجب افزایش ASR می شود. همچنین لایه پوشش کبالت در طول فرآیند اکسیداسیون همدما تبدیل به اسپینل های CoFe2O4، Co3O4 وCoCr2O4 شد. اسپینل های کبالت مقدار ASR ( mΩ cm24/27) کمتری را در مقایسه با نمونه بدون پوشش ( mΩ cm25/60) از خود نشان دادند.
Oxidation resistance and electrical conductivity of stainless steels used as interconnects in solid oxide fuel cells can be improved by using a conductive and protective coating layer. In this study, AISI 304 austenitic stainless steel was coated in a cobalt powder base pack mixture. Isothermal oxidation test was used to investigate the oxidation resistance of coated and non-coated steel. Area specific resistance (ASR) was also measured as a function of oxidation time at 800 °C. Microstructure of coated and oxidized samples was studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) device. The results showed that cobalt coated samples showed better oxidation resistance than non-coated samples. The results showed that increasing the temperature would increase the area specific resistance. The cobalt coating layer also converted to CoFe2O4, Co3O4 and CoCr2O4 spinels during the isothermal oxidation process. Cobalt spinels exhibited less ASR (27.4 mΩ cm2) compared to the uncoated sample (60.5 mΩ cm2).
[1] W.Z. Zhu and S.C. Deevi; “Development of interconnect materials for solid oxide fuel cells” Materials Science and Engineering, Vol.348, pp.227-243, 2003.
[2]W.J. Quadakkers, J. Pirón-Abellàn, V. Shemet and L. Singheiser; “Metallic interconnectors for solid oxide fuel cells - a review” Mater. High Temp, Vol.20,pp.115–127,2003.
[3]W.Z. Zhu and S.C.Deevi , “Opportunity of metallic interconnects for solid oxide fuel cells: A status on contact resistance ” , Materials Research Bulletin,Vol. 38, pp.957-972, 2003.
[4]C. Lee and J. Bae; “Oxidation-resistant thin film coating on ferritic stainless steel by sputtering for solid oxide fuel cells” ; Thin Solid Films,Vol.516, pp.6432-6437,2008.
]5 پوریا لسانی، علیرضا بابائی و ابوالقاسم عطائی “بررسی رفتار اسپینل منگنز کبالتایت به عنوان پوشش صفحات اتصال دهنده پیل سوختی اکسید جامد”، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، مقاله 9، دوره 11، شماره 4، صفحه 97-107، 1396.
[6] F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, “Effect of ZrO2 particles on oxidation and electrical behavior of Co coatings electroplated on ferritic stainless steel interconnect”, Corrosion Science, Vol. 153, pp. 200-212, 2019.
[7] JCW Mah, A. Muchtar, MR. Somalu, MJ. Ghazali. “Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques. International journal of hydrogen energy, Vol. 42, pp. 9219-9229, 2017.
[8] R. Wang, Z. Sun, UB. Pal, S. Gopalan, SN. Basu. “Mitigation of chromium poisoning of cathodes in solid oxide fuel cells employing CuMn1.8O4 spinel coating on metallic interconnect”. Journal of Power Sources, Vol. 376, pp.100–110, 2018.
[9] W. Wei, W. Chen and D.G. Ivey; “Anodic electrodeposition of nanocrystalline coatings in the Mn-Co-O system” ; Chemistry of Materials,Vol.19, pp. 2816–2822, 2007
[10] YZ. Hu, SW Yao, CX Li, CJ Li, SL Zhang. “Influence of pre-reduction on microstructure homogeneity and electrical properties of APS Mn1.5Co1.5O4 coatings for SOFC interconnects”. International journal of hydrogen energy, Vol. 42, pp. 27241 -27253, 2017.
[11] P. Wei, X. Deng, M.R. Bateni and A. Petric; “ Oxidation and electrical conductivity behavior of spinel coatings for metallic interconnects of solid oxide fuel cells” ; Corrosion, Vol.63, pp. 529–536, 2007
[12] X. Deng, P. Wei, M.R. Bateni and A. Petric; “Cobalt plating of high temperature stainless steel interconnectsd” Journal of Power Sources,Vol.160, pp.1225–1229, 2006
[13] F Bezzi, F Burgio, P Fabbri, S Grilli, G Magnani, E. Salernitano, M. Scafè, “SiC/MoSi2 based coatings for Cf/C composites by two step pack cementation”, Journal of the European Ceramic Society, Vol. 39, pp.79-84, 2019.
[14] K. Choi, W. Yang, K. HoBaik, Y. Kim, S. Lee, S. Lee, J. S. Park, “Growth kinetics and isothermal oxidation behavior of a Si pack cementation-coated Mo-Si-B alloy”, Applied Surface Science, doi.org/10.1016/j.apsusc.2019.06.020.
]15 [پوریا لسانی، علیرضا بابائی و ابوالقاسم عطائی “مطالعه الکتروشیمیایی رفتار خوردگی داغ پوشش نفوذی آلومینایدی روی سوپر آلیاژ اینکونل 713C”، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، مقاله 5، دوره 13، شماره 1، صفحه 57-65، 1398.
[16] H.Ebrahimifar, M. Zandrahimi,“Influence of oxide scale thickness on electrical conductivity of coated AISI 430 steel for use as interconnect in solid oxide fuel cells”, Ionics, Vol.18, pp.615, 2012.
[17] H. Ebrahimifar, M. Zandrahimi,“Mn coating on AISI 430 ferritic stainless steel by pack cementation method for SOFC interconnect applications”, Solid State Ionics, Vol.183, pp.71, 2011.
[18] H. Ebrahimifar, M. Zandrahimi,“Evaluation of the parabolic rate constant during different types of oxidation tests for spinel coated Fe-17%Cralloy”, Oxidation of metals,Vol.75,pp.125, 2010.
[19] M. Landkof, A.V. Levy, D.H. Boone, R. Gray, E. Yaniv, “The effect of surfaceadditives on the oxidation of chromia-forming alloys”, Corrosion Science, Vol. 41, pp. 344, 1985.
[20] N. Hussain, K.A. Shahid, I.H. Khan, S. Rahman, Oxidation of high-temperature alloys (superalloys) at elevated temperature in air”, Oxid Met, Vol. 43, pp. 363, 1995.
[21] E. N’Dah, S. Tsipas, M.P. Hierro, F.J. Pe´rez, “Study of the cyclic oxidation resistance of Al coated ferritic steels with 9 and 12%Cr”, Corrosion Science, Vol.49, pp. 3850,2007.
[22] I. Saeki, H. Konno, R. Furuichi, “Initial oxidation of type 430 stainless steelswith0.09-0.9 Mn in 02-N2 atomsphers at 1273 K”, Corrosion Science, Vol.38, pp. 1595, 1996.
[23] T. Horita, Y. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, “Evaluation of Fe-Cr alloys as interconnects for reduced operation temperature SOFCs”, Journal of the Electrochemical Society, Vol.150, pp.243, 2003.
[24] L. Cooper, S. Benhaddad, A. Wood, D.G. Ivey, “The effect of surface treatment on the oxidation of ferritic stainless steels used for solid oxide fuel cell interconnects”, Journal of power sources,Vol.184, pp. 220, 2008.
[25] Z.G. Yang, “Recent advances in metallic interconnects for solid oxide fuel cells”, International Materials Reviews,Vol. 53, pp.39, 2008.
[26] H. Ebrahimifar, M. Zandrahimi. “Oxidation and Electrical Behavior of Mn-Co-Coated Crofer 22 APU Steel Produced by a Pack Cementation Method for SOFC Interconnect Applications”. Oxid Met. Vol. 84, pp.129-149, 2015.
[27] N. Shaigan, D.G. Ivey and W. Chen., “Metal-oxide scale interfacial imperfections and performance of stainless steels utilized as interconnects in solid oxide fuel Cells”, J. Electrochem. Soc, Vol. 156, No. 6, pp.765-770, 2009.
[28] F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, “Evaluation of pulse electroplated cobalt/yttrium oxide composite coating on the Crofer 22 APU stainless steel interconnect”, International Journal of Hydrogen Energy, Vol. 44, pp. 3157-3169, 2019.
[29]N. Shaigan, W. Qu, D.G. Ivey and W. Chen., “A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects”, J. power sources, Vol. 195, No. 6, pp.1529-1542, 2010.
_||_