بررسی جوشکاری لیزر پالسی در آلیاژ آلومینیوم 6061 بر اساس پیش بینی مدلهای فیزیکی ایجاد ترک گرم
محورهای موضوعی : روش ها و فرآیندهای نوین در تولیدحسین ابراهیم زاده 1 * , حسن فرهنگی 2 , سید علی اصغر اکبری موسوی 3
1 - دانشجوی دوره دکتری دانشکده مهندسی متالورژی و مواد دانشگاه تهران
2 - عضو هیات علمی دانشکده فنی دانشگاه تهران
3 - عضو هیات علمی دانشکده فنی دانشگاه تهران
کلید واژه: مدلهای فیزیکی ایجاد ترک گرم, آلیاژهای آلومینیوم, جوشکاری لیزر پالسی, دوربینهای سرعت بالا, شکست مرزدانههای ضعیف,
چکیده مقاله :
ببه وسیله مدلهای فیزیکی ارتباط بین متغیرهای جوشکاری و ترک گرم بر قرار میشود. این مدلها در مقیاسهای میکرو، میانه و ماکرو موجود هستند. در این پژوهش ورقی از جنس آلومینیوم 6061 به وسیله یک دستگاه لیزر پالسی Nd:YAG مورد جوشکاری قرار گرفت. برای اولین بار قطر بازوهای دندریتی در جوش لیزر آلومینیوم اندازهگیری و نتایج با مدلهای انجمادی مقایسه شد. بر خلاف پیشبینی مدلهای ایجاد ترک گرم افزایش قطر بازوهای دندریتی، کاهش سرعت انجماد و کاهش نرخ کرنش باعث کاهش ترکهای گرم نشد. اگرچه بر اساس مدلهای موجود پیشگرم میبایست از مقدار ترکهای گرم بکاهد ولی برعکس مقدار ترکها را به شدت افزایش داد. تصاویر دوربینهای سرعت بالا و بررسیهای سطح ترک به وسیله میکروسکوپ الکترونی روبشی نشان داد که ایجاد ترک در جوشکاری لیزر پالسی سه مرحلهای است: 1) شروع ترک، 2) رشد ترک مرحله اول 3) رشد ترک مرحله دوم. رشد ترک در مرحله دوم در مرزدانههای ضعیف ولی منجمد شده انجام میگیرد. آنچه در نهایت به عنوان ترک در جوش ایجاد میشود مجموعهای از ترک گرم و ترک دمای بالا است و بنابراین مدلهایی که برای جوشکاری پیوسته در نظر گرفته میشوند نیاز به اصلاح بر اساس شرایط ذوب و انجماد پالسی دارند و باید شکست مرزدانههای ضعیف بعد از انجماد نیز در نظر گرفته شوند.
It is necessary to use a physical model for the relationship between welding parameters and hot cracks. These models are available in micro, meso, and macro-scale. In this research, a sheet of 6061 aluminum alloy was welded by a Nd:YAG laser machine. For the first time, the diameter of the dendritic arm spacing in the aluminum laser weld was measured and the results were compared with the solidification models. Contrary to the prediction of hot crack models, increasing the dendritic arm spacing, decreasing the solidification rate, and the reduction of the strain rate did not reduce hot cracking. However, based on the pre-existing models, preheating should reduce hot cracks, but inversely increases the amount of cracks. The images of high speed cameras and the assessment of crack surface by a field emission scanning electron microscopy showed that in pulsed laser welding, hot cracks will be created in three steps: 1) initiation 2) the first step of propagation 3) the second step of propagation. Propagation in the second step will occur in the newly solidified weak grain boundary of the weld metal. What is finally seen as a crack in the weld seam is the solidification and high temperature cracks and therefore, the models that are considered for continuous fusion welding are required to be modified based on the conditions of the pulsed solidification and melting and the fracture of weak grain boundaries after solidification should also be taken into account.
[1] R. R. Ambriz, G. Mesmacque, A. Ruiz, A. Amrouche & V. H. López, “Effect of the welding profile generated by the modified indirect electric arc technique on the fatigue behavior of 6061-T6 aluminum alloyˮ, Materials Science and Engineering A, Vol. 527, 2010.
[2] ف. غروی، ا. ابراهیم زاده و ع. سهیلی، "ارزیابی ریزساختار و خواص مکانیکی اتصال لبه رویهم جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم 6061 در سرعت های پیشروی متفاوت"، فرآیندهای نوین در مهندسی مواد، سال دهم، شماره دوم، سال 1395.
[3] D. Y. Kim & Y. W. Park, “Weldability evaluation and tensile strength estimation model for aluminum alloy lap joint welding using hybrid system with laser and scanner headˮ, Transactions of Nonferrous Metals Society of China, Vol. 22, 2012.
[4] A. Schneider, V. Avilov, A. Gumenyuk & M. Rethmeier, “Laser beam welding of aluminum alloys under the influence of an electromagnetic fieldˮ, Physics Procedia, Vol. 41, 2013.
[5] م. جوکار، ف. مالک قاینی، م. ج. ترکمنی، ح. جغتایی و م. ص. عین الدین، "بررسی پارامترهای موثر بر دمش گاز محافظ در جوشکاری لیزر پالسی Nd:YAG"، فرآیندهای نوین در مهندسی مواد، سال هشتم، شماره اول، سال 1393.
[6] L. Katgerman & D.G. Eskin, “In search of the prediction of hot cracking in aluminium alloysˮ, in Hot Cracking Phenomena in Welds II, T. Böllinghaus, H. Herold, C. E. Cross, and J. C. Lippold, Eds.: springer, 2008.
[7] D. G. Eskin, Suyitno & L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloysˮ, Progress in Materials Science, Vol. 49, 2004.
[8] C. E. Cross & N. Coniglio, “Weld Solidification Cracking: Critical Conditions for Crack Initiation and Growthˮ, Hot Cracking Phenomena in Welds II, pp. 44-66, 2008.
[9] M. WolfTh, Th. Kannengie & Th. βer Böllinghaus, “Determination of critical strain rate for solidification cracking by numerical simulation ˮ,in Hot Cracking Phenomena in Welds II: springer, pp. 77-92, 2008.
[10] D. G. Eskin & L. Katgerman, “A quest for a new hot tearing criterionˮ, Metallurgical and Materials Transactions A, Vol. 38, No. 7, pp. 1511-1519, 2007.
[11] E. Gawronska, “Different techniques of determination of the cracking criterion for solidification in castingˮ, Procedia Engineering, Vol. 177, pp. 86-91, 2017.
[12] N. Hatami, R. Babaei, M. Dadashzadeh & P. Davami, “Modeling of hot tearing formation during solidificationˮ, Journal of Materials Processing Technology, Vol. 205, No. 1, pp. 506-513, 2008.
[13] S. Kou, “A criterion for cracking during solidificationˮ, Acta Materialia, Vol. 88, pp. 366-374, 2015.
[14] M. Rappaz, J. M. Drezet & M. Gremaud, “A new hot-tearing criterionˮ, Metallurgical and Materials Transactions A, Vol. 30, No. 2, pp. 449-455, 1999.
[15] N. Coniglio & C. E. Cross, “Mechanisms for solidification crack initiation and growth in aluminum weldingˮ, Metallurgical and Materials Transactions A, Vol. 40, pp. 11, 2009.
[16] M. Rappaz, “Modeling and characterization of grain structures and defects in solidificationˮ, Current Opinion in Solid State and Materials Science, Vol. 20, No. 1, pp. 37-45, 2016.
[17] J. M. Drezet, M. S. Fernandes de Lima, J. D. Wagnière, M. Rappaz & W. Kurz, “Crack-free aluminium alloy welds using a twin laser processˮ, Safety and Reliability of Welded Components in Energy and Processing Industry, pp. 87-94, 2008.
[18] R. P. Liu, Z. J. Dong & Y. M. Pan, “Solidification crack susceptibility of aluminum alloy weld metalsˮ, Transactions of Nonferrous Metals Society of China, Vol. 16, No. 1, pp. 110-116, 2006.
[19] X. Wang, F. Lu, H. P. Wang, Z. Qu & L. Xia, “Micro-scale model based study of solidification cracking formation mechanism in Al fiber laser weldsˮ, Journal of Materials Processing Technology, Vol. 231, pp. 18-26, 2016.
[20] H. R. Zareie Rajani & A. B. Phillion, “A mesoscale solidification simulation of fusion welding in aluminum–magnesium–silicon alloysˮ, Acta Materialia, Vol. 77, pp. 162-172, 2014.
[21] M. Sistaninia, A. B. Phillion, J. M. Drezet & M. Rappaz, “Three-dimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feedingˮ, Acta Materialia, Vol. 60, No. 9, pp. 3902-3911, 2012.
[22] M. Bellet, G. Qiu & J. M. Carpreau, “Comparison of two hot tearing criteria in numerical modelling of arc welding of stainless steel AISI 321ˮ, Journal of Materials Processing Technology, Vol. 230, pp. 143-152, 2016.
[23] X. Wang, F. Lu, H. P. Wang, H. Cui, X. Tang & Y. Wu, “Mechanical constraint intensity effects on solidification cracking during laser welding of aluminum alloysˮ, Journal of Materials Processing Technology, Vol. 218, pp. 62-70, 2015.
[24] Y. Wei, Z. Dong, R. Liu & Z. Dong, “Modeling the Trans-Varestraint test with finite element methodˮ, Computational Materials Science, Vol. 35, No. 2, pp. 84-91, 2006.
[25] Z. B. Dong & Y. H. Wei, “Three dimensional modeling weld solidification cracks in multipass weldingˮ, Theoretical and Applied Fracture Mechanics, Vol. 46, No. 2, pp. 156-165, 2006.
[26] H. R. Zareie Rajani & A. B. Phillion, “3-D multi-scale modeling of deformation within the weld mushy zoneˮ, Materials & Design, Vol. 94, pp. 536-545, 2016.
[27] H. R. Zareie Rajani & A. B. Phillion, “3D multi-scale multi-physics modelling of hot cracking in weldingˮ, Materials & Design, Vol. 144, pp. 45-54, 2018.
[28] M. Sheikhi, F. Malek Ghaini & H. Assadi, “Solidification crack initiation and propagation in pulsed laser welding of wrought heat treatable aluminium alloyˮ, Science and Technology of Welding and Joining, Vol. 19, No. 3, pp. 250-255, 2014.
[29] M. Sheikhi, F. Malek Ghaini & H. Assadi, “Prediction of solidification cracking in pulsed laser welding of 2024 aluminum alloyˮ, Acta Materialia, Vol. 82, pp. 491-502, 2015.
[30] A. Eder, S. Jaber & N. Jank, “Using Simulation for Investigations of Hot Cracking Phenomena in Resistance Spot Welding of 6xxx Aluminum Alloys (AA6016 and AA6181)ˮ, in Hot Cracking Phenomena in Welds II, T. Böllinghaus, H. Herold, C. E. Cross, and J. C. Lippold, Eds.: springer, 2008.
[31] M. Mosallaee pour, F. Bodaghi & M. Moshrefifar, “Surface modification of low carbon steel substrate by Al-rich clad layer applied by GTAWˮ, Surface & Coatings Technology, Vol. 206, 2011.
[32] S. Kim, Y. Jeong, J. Park & Y. Lee, “Fundamental study on electron beam weld sections and strengths using AA6061-T6 aluminum alloy plateˮ, Journal of Mechanical Science and Technology, Vol. 27, 2013.
[33] Z. Tang, T. Seefeld & F. Vollertsen, “Grain Refinement by Laser Welding of AA 5083 with Addition of Ti/Bˮ, Physics Procedia, Vol. 12, 2011.
[34] N. S. Birdar & R. Raman, “Investigation of hot cracking behavior in transverse mechanically arc oscillated autogenous AA2014 T6 TIG weldsˮ, Metallurgical and Materials Transactions A, Vol. 43, 2012.
[35] T. Yuan, S. Kou & Z. Luo, “Grain refining by ultrasonic stirring of the weld poolˮ, Acta Materialia, Vol. 106, 2016.
[36] P. Von Witzendorff, S. Kaierle, O. Suttmann & L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibilityˮ, Metallurgical and Materials Transactions A, Journal Article, Vol. 46, No. 4, pp. 1678-1688, 2015.
[37] D. Suyitno, W. H. Kool & L. Katgerman, “Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 Pct Cu alloyˮ, Metallurgical and Materials Transactions A, pp. 1537-1546, 2005.
[38] P. V. Witzendorff, S. Kaierle, O. Suttmann & L. Overmeyer, “In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibilityˮ, Metallurgical and Materials Transactions A, Vol. 46, pp. 11, 2015.
[39] M. Sheikhi, F. Malek Ghaini & H. Assadi, “Prediction of solidification cracking in pulsed laser welding of 2024 aluminum alloyˮ, Acta Materialia, Vol. 82, pp. 12, 2015.
[40] X. He, P. Fuerschbach & T. DebRoy, “Heat transfer and fluid flow during laser spot welding of 304 stainless steelˮ, Journal of Physics D: Applied Physics, Vol. 36, No. 12, pp. 1388, 2003.
[41] X. He, J. Elmer & T. DebRoy, “Heat transfer and fluid flow in laser microweldingˮ, Journal of Applied Physics, Vol. 97, No. 8, pp. 084909, 2005.
[42] S. Kou, Welding metallurgy, Second ed. New Jersey: John Wiley & Sons, Inc., 2003.
[43] H. Ebrahimzadeh & S. A. A. A. Mousavi, “Investigation on pulsed Nd:YAG laser welding of 49Ni–Fe soft magnetic alloyˮ, Materials & Design, Vol. 38, pp. 115-123, 2012.
[44] S. McFadden & D. Browne, “A generalized version of an ivantsov-based dendrite growth model incorporating a facility for solute measurement ahead of the tipˮ, Computational Materials Science, Vol. 55, 2012.
[45] J. P. Bergmann, M. Bielenin, M. Stambke, T. Feustel, P. V. Witzendorff & J. Hermsdorf, “Effects of diode laser superposition on pulsed laser welding of aluminumˮ, Physics Procedia, Vol. 41, 2013.
[46] Y. Danis, E. Lacoste & C. Arvieu, “Numerical modeling of inconel 738LC deposition welding: Prediction of residual stress induced crackingˮ, Journal of Materials Processing Technology, Vol. 210, No. 14, pp. 2053-2061, 2010.
_||_