تعیین شرایط بهینه تولید و مشخصه یابی ذرّات فرات پتاسیم تولید شده به روش الکتروشیمیایی
محورهای موضوعی : سنتز موادسینا صمیمی سده 1 , احسان صائب نوری 2 , سید علی حسن زاده تبریزی 3
1 - مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
2 - مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
3 - مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
کلید واژه: انرژی مصرفی, فرات پتاسیم, روش الکتروشیمیایی, خلوص, راندمان جریان,
چکیده مقاله :
راندمان تولید و انرژی مصرفی دو فاکتور مهم در تولید الکتروشیمیایی ذرّات فرات پتاسیم هستند. در این پژوهش تاثیر پارامترهای مختلف مانند دانسیته جریان اعمالی، غلظت الکترولیت KOH و دمای آن بر راندمان تولید و انرژی مصرفی بررسی شد. در دانسیته جریان 40 و الکترولیتM 13- KOH با دمای ℃ 70 شرایط بهینه تولید در مدت زمان 2 ساعت بدست آمد. در این شرایط راندمان تولید برابر % 63/84 و جریان مصرفی برابر kwh/kg05/5 بود. با بدست آمدن شرایط بهینه تولید، تاثیر گذشت زمان تولید بر راندمان تولید، خلوص، فازهای تشکیل شده و اندازه ذرّات فرات پتاسیم مورد بررسی قرار گرفت. با گذشت زمان در اثر تجزیه ذرّات فرات پتاسیم، ترکیبات هیدروکسیدی و اکسیدی آهن شکل میگیرند که باعث کاهش خلوص و راندمان تولید میگردد. اندازه ذرّات فرات پتاسیم به دو روش با استفاده از معادله دبای- شرر و شرر اصلاح شده اندازه گیری شد. با افزایش زمان تولید اندازه ذرّات فرات پتاسیم افزایش یافت.
Production efficiency and energy consumption are two important factors in electrochemical synthesis of potassium ferrate particles. In this research, the effects of different parameters including applied current density, KOH electrolyte concentration and its temperature on production efficiency and energy consumption have been studied. The condition of optimized production has achieved in current density of 40 mA.cm-2, 13M KOH electrolyte with temperature of 70 oC for two hours. In this situation, the production efficiency was 84.63% and the energy consumption was 5.05 kwh/kg. In next step, the effect of time duration on production efficiency, purity, formed phases and the size of potassium ferrate particles has been investigated in optimal condition. The results showed that due to decomposition of potassium ferrate particles with time, iron hydroxides and oxides components have been formed which reduces the purity and production efficiency. The sizes of potassium ferrate particles were measured by two method of Debye-Scherrer and modified Debye-Scherrer. This revealed that the size of potassium ferrate particles increases as time passes.
[1] V. Shastry, “Waste Water Treatment Using Eco Friendly Oxidising Agent Fe (VI) ”, Hydrology: Current Research (Previously JWWTA), 2011.
[2] D. Tiwari & S. M. Lee, “Ferrate (VI) in the Treatment of Wastewaters: A New Generation Green Chemicalˮ, INTECH Open Access Publisher, 2011.
[3] V. K. Sharma, “Oxidation of inorganic contaminants by ferrates (VI, V, and IV)–kinetics and mechanisms: A review”, Journal of Environmental Management, Vol. 92, No. 4, pp. 1051-1073, 2011.
[4] D. Ghernaout & M. Naceur, “Ferrate (VI): In situ generation and water treatment–A review”, Desalination and Water Treatment, Vol. 30, No. 1-3, pp. 319-332, 2011.
[5] Z. Mácová, K. Bouzek & V. K. Sharma, “The influence of electrolyte composition on electrochemical ferrate (VI) synthesis. Part I: anodic dissolution kinetics of pure iron”, Journal of applied electrochemistry, Vol. 40, No. 5, pp. 1019-1028, 2010.
[6] F. Lapicque & G. Valentin, “Direct electrochemical preparation of solid potassium ferrate”, Electrochemistry Communications, Vol. 4, No. 10, pp. 764-766, 2002.
[7] L. Ding, “Removal of methyl mercaptan from foul gas by in-situ production of ferrate (VI) for odour control”, The Hong Kong Polytechnic University, Hong Kong, 2013.
[8] P. Bonnici & R. Denault, “Process for treatment of oxide films prior to chemical cleaningˮ, 1984.
[9] B. F. Monzyk, J. A. Ford, J. T. Stropki, D. N. Clark, V. V. Gadkari & K. P. Mitchell, “Corrosion resistant primer coating”, Google Patents, 2014.
[10] T. Burleigh, P. Schmuki & S. Virtanen, “Properties of the Nanoporous Anodic Oxide Electrochemically Grown on Steel in Hot 50% NaOH”, Journal of The Electrochemical Society, Vol. 156, No. 1, pp. C45-C53, 2009.
[11] X. Yu & S. Licht, “Advances in electrochemical Fe (VI) synthesis and analysis”, Journal of Applied Electrochemistry, Vol. 38, No. 6, pp. 731-742, 2008.
[12] M. Alsheyab, J. Q. Jiang & C. Stanford, “Electrochemical generation of ferrate (VI): Determination of optimum conditions”, Desalination, Vol. 254, No. 1, pp. 175-178, 2010.
[13] W. He, H. Shao, Q. Chen, J. Wang & J. Zhang, “Polarization Characteristic of Iron Anode in Concentrated NaOH Solution”, Acta Physico-Chimica Sinica, Vol. 23, No. 10, pp. 1525-1530, 2007.
[14] W. He, J. Wang, H. Shao, J. Zhang & C. n. Cao, “Novel KOH electrolyte for one-step electrochemical synthesis of high purity solid K 2 FeO 4: Comparison with NaOH”, Electrochemistry communications, Vol. 7, No. 6, pp. 607-611, 2005.
[15] W. He, J. Wang, C. Yang & J. Zhang, “The rapid electrochemical preparation of dissolved ferrate(VI): Effects of various operating parameters”, Electrochimica Acta, Vol. 51, No. 10 pp. 1967-1973, 2006.
[16] Y. L. Wei, Y. S. Wang & C. H. Liu, “Preparation of Potassium Ferrate from Spent Steel Pickling Liquid”, Metals, Vol. 5, NO. 4, pp. 1770-1787, 2015.
[17] S. Barışçı, F. Ulu, H. Sarkka, A. Dimoglo & M. Sillanpaa, “Electrosynthesis of Ferfb6rdrate (VI) ion using high purity iron electrodes: optimization of influencing parameters on the process and investigating its stability”, Int. J. Electrochem. Sci, Vol. 9, pp. 3099-3117, 2014.
[18] M. De Koninck, T. Brousse & D. Bélanger, “The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters”, Electrochimica Acta, Vol. 48, No. 10, pp. 1425-1433, 2003.
[19] آ. فتاح الحسینی و ا. ایمان طلب، "بررسی رفتار الکتروشیمیایی فولاد زنگ نزن 304 کم کربن در یک محلول قلیایی با روش موت - شاتکی و طیف سنجی امپدانس الکتروشیمیایی"، فصلنامه علمی تخصصی مهندسی مواد مجلسی، سال هشتم، شماره دوم، تابستان 1393.
[20] A. Fattah-alhosseini & M. M. Khalvan, “Semiconducting properties of passive films formed on AISI 420 stainless steel in nitric acid solutions”, Journal of Advanced Materials and Processing, Vol. 1, No. 4, pp. 15-22, 2013.
[21] A. D. P. RIOS, “Dewatering of Biosolids by Sodium Ferrate”, University of Central Florida Orlando, Florida, 2004.
[22] C. Li, X. Li & N. Graham, “A study of the preparation and reactivity of potassium ferrateˮ, Chemosphere, Vol. 61, No. 4, pp. 537-543, 2005.
[23] L. Bragg & W. H. Bragg, “The crystalline state: a general survey”, Bell, 1949.
[24] ا. منشی و س. سلطان عطار، "به کارگیری روشی نوین در اندازه گیری نانو ذرات با استفاده از رابطه شرر و پراش پرتو ایکس"، فصلنامه علمی تخصصی مهندسی مواد مجلسی، سال دوم، شماره ششم، پاییز 1387.
[25] Z. Ding, C. Yang & Q. Wu, “The electrochemical generation of ferrate at porous magnetite electrode”, Electrochimica Acta, Vol. 49, No. 19, pp. 3155-3159, 2004.
[26] J. Y. Zou & D. T. Chin, “Mechanism of steel corrosion in concentrated NaOH solutions”, Electrochimica Acta, Vol. 32, No. 12, pp. 1751-1756, 1987.
[27] H. Wang, Y. Liu, F. Zeng & S. Song, “Electrochemical Synthesis of Ferrate (VI) by Regular Anodic Replacement”, Int. J. Electrochem. Sci, Vol. 10, pp. 7966-7976, 2015.
[28] M. Alsheyab, J. Q. Jiang & C. Stanford, “On-line production of ferrate with an electrochemical method and its potential application for wastewater treatment – A review”, Journal of Environmental Management. Vol. 90, No. 3, pp. 1350-1356, 2009.
[29] H. Shao, J. Wang, W. He, J. Zhang & C. Cao, “EIS analysis on the anodic dissolution kinetics of pure iron in a highly alkaline solution”, Electrochemistry communications, Vol. 7, No. 12, pp. 1429-1433, 2005.
_||_