پوششدهی نانوذرات کاربید سیلیسیم (SiC) بر روی کامپوزیت کربن ـ کربن به روش رسوبدهی الکتروفورتیک (EPD)
محورهای موضوعی : عملیات حرارتیعلی گلشنی عجب شیر 1 , حسین آقاجانی 2 , محمد جعفرپور 3 , سهند بهرنگی 4
1 - دانشگاه تبریز
2 - دانشگاه تبریز
3 - دانشگاه تبریز
4 - دانشگاه تبریز
کلید واژه: پتانسیل زتا, رسوبدهی الکتروفورتیک, نانوذرات SiC, کامپوزیت کربن ـ کربن, پایداری سوسپانسیون,
چکیده مقاله :
هدف از این پژوهش بررسی پایداری نانوذرات SiC بهمنظور پوششدهی بر روی کامپوزیت کربن ـ کربن به روش EPD میباشد. بدین منظور سوسپانسیونهایی در حلالهای مختلف و در حضور پراکندهساز PEI تهیه شدند. پایداری سوسپانسیونها توسط تصاویر ماکروسکوپی تهیه شده از آنها پس از گذشت 24 ساعت و اندازهگیری پتانسیل زتا و توزیع اندازه ذرات مورد بررسی قرارگرفت. در ادامه پوشش مورد نظر از سوسپانسیون بهینه بر روی زیر لایه اعمال شد. نتایج نشان داد که سوسپانسیون تهیه شده در اتانول، در pH=10 و در حضور 6 درصد وزنی PEI پایداری بهتری دارد. همچنین تصاویر میکروسکوپ الکترونی روبشی (SEM) نشان داد که پوشش اعمال شده در ولتاژ 30 ولت کیفیت بهتری داشته و دارای سطح یکنواخت و بدون حفره میباشد.
The aim of this research is to investigate the stability of SiC nanoparticles for deposition on C/C composite by EPD method. Thus, different suspensions were prepared with different solvents and in presence of PEI as dispersant. The stability of suspensions was studied by using their macroscopic pictures after 24 h, and measurement of zeta potential values and particle size distribution. Thereafter, the coating was applied onto the substrate using the optimized suspension. The results showed that the suspension prepared in ethanol, with pH=10 and addition of 6 wt% PEI has the best stability. Also, SEM micrographs revealed that the coating applied with the voltage of 30 V results in a better quality and has a uniform and pitiless surface.
[1] J. I. Kim et al., “Design of a C/SiC Functionally Graded Coating for the Oxidation Protection of C/C Composites”, Carbon, Vol. 43, pp. 1749–1757, 2005.
[2] H. Jafari et al., “Nano-SiC/SiC Anti-Oxidant Coating on the Surface of Graphite”, Applied Surface Science, Vol. 264, pp. 128– 132, 2013.
[3] J. F. Huang et al., “Microstructure and Anti-Oxidation Property of Mullite Oxidation Protective Coating Prepared by Hydrothermal Electrophoretic Deposition for SiC–C/C Composites”, Surface & Coatings Technology, Vol. 205, pp. 5077–5082, 2011.
[4] J. Li et al., “Oxidation Behavior and Kinetics of SiC/Alumina–Borosilicate Coating for Carbon–Carbon Composites”, Applied Surface Science, Vol. 255, pp. 1967–1974, 2008.
[5] F. Q. Gang et al., “Oxidation Protective Glass Coating for SiC Coated Carbon/Carbon Ccomposites for Application at 1773 K”, Materials Letters, Vol. 60, pp. 431–434, 2006.
[6] Y. Zeng et al., “SiC/SiC–YAG–YSZ Oxidation Protective Coatings for Carbon/Carbon Composites”, Corrosion Science, Vol. 70, pp. 68–73, 2013.
[7] F. Tao et al., “Microstructure and Anti-Oxidation Properties of Multi-Composition Ceramic Coatings for Carbon/Carbon Composites”, Ceramics International, Vol. 37, pp. 79–84, 2011.
[8] K. T. Wang et al., “Microstructure and Oxidation Resistance of C-AlPO4–Mullite Coating Prepared by Hydrothermal Electrophoretic Deposition for SiC–C/C Composites”, Ceramics International, Vol. 39, pp. 1037–1044, 2013.
[9] م. یاری و همکاران "تاثیر زمان لایه نشانی بر خواص ساختاری و فیزیکی پوششهای کربنی لایهنشانی شده با روش کندوپاش مگنترونی"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 5 شماره 2، ص. 1- 10، تابستان 1390.
[10] J. Zhao et al., “Microstructure and Property of SiC Coating for Carbon Materials”, Fusion Engineering and Design, Vol. 82, pp. 363–368, 2007.
[11] X. Yang et al., “A Double Layer Nanostructure SiC Coating for Anti-Oxidation Protection of Carbon/Carbon Composites Prepared by Chemical Vapor Reaction and Chemical Vapor Deposition”, Ceramics International, Vol. 39, pp. 5053–5062, 2013.
[12] Y. Long et al., “The Effect of Substrate Position on the Microstructure and Mechanical Properties of SiC Coatings on Carbon/Carbon Composites”, Surface & Coatings Technology, Vol. 206, pp. 568–574, 2011.
[13] Q. G. Fu et al., “Silicon Carbide Coating to Protect Carbon/Carbon Composites Against Oxidation”, Scripta Materialia, Vol. 52, pp. 923–927, 2005.
[14] J. Liu et al., “A ZrSiO4/SiC Oxidation Protective Coating for Carbon/Carbon Composites”, Surface & Coatings Technology, Vol. 206, pp. 3270–3274, 2012.
[15] X. Zou et al., “ZrB2–SiC Coating to Protec”", Surface & Coatings Technology, Vol. 226, pp. 17–21, 2013.
[16] H. J. Feng et al., “Influence of the Preparation Temperature on the Phase, Microstructure and Anti-Oxidation Property of a SiC Coating for C/C Composites”, Carbon, Vol. 42, pp. 1517–1521, 2004.
[17] L. Nobre et al., “Engineering Surface and Electrophoretic Deposition of SiC Powder”, Materials Letters, Vol. 50, pp. 115–119, 2001.
[18] S. Novak et al., “Electrophoretic Deposition in the Production of SiC/SiC Composites for Fusion Reactor Applications”, European Ceramic Society, Vol. 28, pp. 2801–2807, 2008.
[19] Ch. You et al., “SiC/TiC laminated Structure Shaped by Electrophoretic Deposition”, Ceramics International, Vol. 30, pp. 813–815, 2004.
[20] L. Besra et al., “A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD) ”, Progress in Materials Science, Vol. 52, pp. 1–61, 2007.
[21] R. Boccaccini et al., “Application of Electrophoretic and Electrolytic Deposition Techniques in Ceramics Processing”, Current Opinion in Solid State and Materials Science, Vol. 6, pp. 251–260, 2002.
[22] ح. ملکی قلعه و همکاران "بررسی اتلاف حرارتی پوشش سد حرارتی نانوساختار ساخته شده به روش EPD"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، سال 8 شماره 2، ص. 33- 104، تابستان 1393.
[23] M. Verde et al., “Electrophoretic Deposition of Transparent ZnO Thin Films from Highly Stabilized Colloidal Suspensions”, Colloid and Interface Science, Vol. 373, pp. 27–33, 2012.
[24] D. Das et al., “Suspension Chemistry and Electrophoretic Deposition of Zirconia Electrolyte on Conducting and Non-Conducting Substrates”, Materials Research Bulletin, Vol. 48, pp. 3254–3261, 2013.
[25] S. Mahmoodi et al., “Electrophoretic Deposition of Hydroxyapatite–Chitosan Nanocomposite Coatings in Different Alcohols”, Surface & Coatings Technology, Vol. 216, pp. 106–114, 2013.
[26] M. Farrokhi-Rad et al., “Effect of Triethanolamine on the Electrophoretic Deposition of Hydroxyapatite Nanoparticles in Isopropanol”, Ceramics International, Vol. 39, pp. 7007–7013, 2013.
[27] M. Popa et al., “Influence of Ammonium Salt of Poly-Methacrylic Acid and Butylamine Addition on the Viscosity and Electrophoretic Deposition Behavior of Ethanol-Based Powder Suspensions”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 267, pp. 74–78, 2005.
[28] M. F. De Riccardis et al., “A Novel Method for Preparing and Characterizing Alcoholic EPD Suspensions”, Colloid and Interface Science, Vol. 307, pp. 109–115, 2007.
[29] K. Wu et al., “Electrophoretic Deposition of TiO2 and Composite TiO2–MnO2 Films Using Benzoic Acid and Phenolic Molecules as Charging Additives”, Colloid and Interface Science, Vol. 352, pp. 371–378, 2010.
[30] M. N. Rahaman, Ceramic Processing and Sintering, (New York, NY: Marcell Dekker, Inc), p.191, 2003.
[31] Coupé et al., “Dispersion Behaviour of Laser-Synthesized Silicon Carbide Nanopowders in Ethanol for Electrophoretic Infiltration”, European Ceramic Society, Vol. 32, pp. 3837–3850, 2012.
[32] G. Jian et al., “Cobalt Ferrite Dispersion in Organic Solvents for Electrophoretic Deposition: Influence of Suspension Parameters on the Film Microstructure”, Materials Chemistry and Physics, Vol. 143, pp. 653–660, 2014.
[33] R. He et al., “Preparation of High Solid Loading, Low Viscosity ZrB2–SiC Aqueous Suspensions Using PEI as Dispersant”, Ceramics International, Vol. 39, pp. 2267–2274, 2013.
[34] X. Zhang et al., “Dispersion and co-dispersion of ZrB2 and SiC nanopowders in ethanol”, Ceramics International, Vol. 38, pp. 2733–2741, 2012.