Exploring Hormone Signaling Pathways in Plants: The Integral Role of Jasmonic Acid in Cell Signaling Mechanisms
Subject Areas : Journal of plant ecophysiology
Gholam Abbas Mohammadi
1
*
,
M.R. Bahramjerdi
2
1 - Department of Agronomy, Jiroft Branch ,Islamic Azad University, Jiroft, Iran
2 - Member of Faculty, Department of Agriculture, Jiroft Branch ,Islamic Azad University, Jiroft, Iran
Keywords: Plant Hormones, Jasmonate Signaling , Elicitors, Hormone Receptors, Hormone Mutants,
Abstract :
Objective: This paper aims to explore the intricate role of plant hormones in mediating growth and development in response to various biotic and abiotic stimuli. By examining the signaling pathways involved, particularly in the context of jasmonic acid, the study seeks to enhance the understanding of hormone action and its implications for plant physiology and molecular genetics.
Methods: The review synthesizes current literature on plant hormone signaling, focusing on the characterization of mutants within hormone response pathways. It highlights methodologies used to dissect the molecular genetics of hormone signaling, including genetic, biochemical, and molecular approaches. The paper emphasizes recent advancements in understanding jasmonic acid signaling and its role in plant responses to environmental stresses and pest attacks.
Results: The findings indicate that plant hormones serve as critical chemical messengers that regulate diverse physiological processes. The characterization of hormone response mutants has revealed specific signaling pathways that translate external and internal stimuli into cellular responses. Recent progress in jasmonic acid signaling has uncovered its pivotal role in mediating plant defense mechanisms and adapting to environmental challenges, showcasing the complexity and specificity of hormone action in plants.
Conclusions: This paper offers a detailed overview of plant hormone signaling, emphasizing jasmonic acid. It discusses the role of mutant analysis in exploring the molecular genetics of hormone pathways, providing insights for future plant biology research and agricultural applications. The review highlights the necessity of understanding hormone signaling to develop strategies that enhance plant resilience against biotic and abiotic stresse.
Aducci, P. 1997. Signal transduction in plants, In: Molecular and CellBiology Updates (Eds.: A. Azzi and L. Packer). Birkhauser, Basel Boston Berlin.
Alonso, J.M., A.N. Stepanova, R. Solano, E. Wisman, S. Ferrari, F.M. Ausubel and J.R. Ecker. 2003a. Five components of the ethyleneresponse pathway identified in a screen for weak ethyleneinsensitive mutants in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100: 2992-7.
Alonso, J.M., A.N. Stepanova, T.J. Leisse, C.J. Kim, H. Chen, P. Shinn, D.K. Stevenson, J. Zimmerman, P. Barajas, R. Cheuk, C. Gadrinab, C. Heller, A. Jeske, E. Koesema, C.C. Meyers, H. Parker, L. Prednis, Y. Ansari, N. Choy, H. Deen, M. Geralt, N.Hazari, E. Hom, M. Karnes, C. Mulholland, R. Ndubaku, I. Schmidt, P. Guzman, L. Aguilar-Henonin, M. Schmid, D. Weigel, D.E. Carter, T. Marchand, E. Risseeuw, D. Brogden, A. Zeko, W.L. Crosby, C.C. Berry and J.R. Ecker. 2003b. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-7.
Berger, S., E. Bell and J.E. Mullet. 1996. Two methyl jasmonateinsensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol. 111: 525-531.
Bitoun, R., P. Rousselin and M. Caboche. 1990. A pleiotropic mutation results in cross resistance to auxin, abscisic acid, and paclobutrazol. Mol Gen Genet 220: 234-239.
Bohen, S.P., A. Kralli and K.R. Yamamoto. 1995. Hold Ôem and fold Ôem: chaperones and signal transduction. Science 268: 1303- 1304.
Cernac, A., C. Lincoln, D. Lammer and M. Estelle. 1997. The SAR1 geneof Arabidopsis acts downstream of the AXR1 gene in auxin response. Development 124: 1583-1591.
Davies, P.J. 1995. The Plant Hormones: their nature, occurrence and functions. In: The plant hormones: physiology, biochemistry and molecular biology, 2 ed. (Ed. P. J. Devies), Kluwer Acad. Pub. pp.1-12.
Del Pozo, J.C. and M. Estelle. 2000. F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant. Mol. Biol. 44: 123-128.
Demidchik, V., C. Nichols, M. Oliynyk, A. Dark, B.J. Glover and J.M. Davies. 2003. Is ATP a signaling agent in plants? Plant Physiol. 133: 456-61.
Dennison, K.L. and E.P. Spalding. 2000. Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol.124: 1511-4.
Ebel, J. and E.G. Cosio. 1994. Elicitors of plant defense responses. Int Rev Cytol 148: 1-33.
Ellis, C. and J.G. Turner. 2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025-033.
Engelberth, J., H.T. Alborn, E.A. Schmelz and J.H. Tumlinson. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. U.S.A. 101: 1781-5.
Enyedi, A.J., N. Yalpani, P. Silverman and I. Raskin. 1992. Signal molecules in systemic plant resistance to pathogens and pests. Cell 70: 879-886.
Farmer, E.E. and C.A. Ryan. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. U.S.A. 87: 7713-6.
Feng, S., L. Ma, X. Wang, D. Xie, S.P. Dinesh-Kumar, N. Wei and X.W. Deng. 2003. The COP9 signalosome interacts physically with SCF COI1 and modulates jasmonate responses. Plant Cell 15: 1083- 94.
Feys, B.J.F., C.E. Benedetti, C.N. Penfold and J.G. Turner. 1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistance to a bacterial pathogen. Plant Cell 6: 751-759.
Gamble, R.L., M.L. Coonfield and G.E. Schaller. 1998. Histidine kinase activity of the ETR1 ethylene receptor from rabidopsis. Proc. Natl. Acad. Sci. U.S.A. 95: 7825-7829.
Gibson, S.I., R.J. Laby and D. Kim. 2001. The sugar-insensitive1 (sis1) mutant of Arabidopsis is allelic to ctr1. Biochem Biophys Res Commun 280: 196-203.
Gray, W.M. and M. Estelle. 1998. Biochemical genetics of plant growth. Curr. Opin. Biotech. 9: 196-201.
Gray, W.M., J.C. Del Pozo, L. Walker, L. Hobbie, E. Risseeuw, T. Banks, W.L. Crosby, M. Yang, H. Ma and M. Estelle. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev.13:1678-91.
Harten, A.M.V. 1998. Mutation breeding; theory and practical applications Cambridge Univ Press, Cambridge. Hildmann, T., M. Ebneth, H. Pena-Cortes, J.J. Sanchez-Serrano, L. Willmitzer and S. Prat. 1992. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4: 1157-70.
Hirayama, T., J.J. Kieber, N. Hirayama, M. Kogan, P. Guzman, S. Nourizadeh, J.M. Alonso, W.P. Dailey, A. Dancis and J.R. Ecker. 1999. Responsive-to-antagonist1, a Menkes/Wilson diseaserelated copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383-93.
Howe, G.A., J. Lightner, J. Brose and C.A. Ryan. 1996. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067-2077.
Hsieh, H., H. Okamoto, M. Wang, L. Ang, M. Matsui, H. Goodman and X.W. Deng. 2000. FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14:1958-1970.
Huang, X., K. Stettmaier, C. Michel, P. Hutzler, M.J. Mueller and J.Durner. 2004. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta ISSN: 0032-0935 (Paper) 1432-2048 (Online):DOI: 10.1007/s00425- 003-1172-7.
Imamura, A., N. Hanaki, H. Umeda, A. Nakamura, T. Suzuki, C. Ueguchi and T. Mizuno. 1998. Response regulators implicated in His-to- Asp phosphotransfer signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 95: 2691-2696.
Ishiguro, S., A. Kawai-Oda, J. Ueda, I. Nishida and K. Okada. 2001. The defective in anther dehiscence gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-209.
Karin, M. and Y. Ben-Neriah. 2000. Phosphorylation meetsubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18: 621-663.
Keen, N.T. 1975. Specific elicitors of plant phtoalexin production: determinant of race specificity in pathogens?Science187:74-75.
Klumpp, S. and J. Krieglstein. 2002. Phosphorylation and dephosphorylation of histidine residues in proteins. Eur. J. Biochem. 269: 1067-71.
Koornneef, M. and V.D. Veen. 1980. Induction and analysis of gibberellin-sensitive mutants of Arabidopsis thaliana (l.) Heynh. Theor. Appl. Genet. 58: 257-263.
Krysan, P.J., J.C. Young and M.R. Sussman. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283-2290.
Malamy, J. and D.K. Klessig. 1992. Salicylic acid and disease resistance. Plant J. 2: 643-654.
McConn, M. and J. Browse. 1996. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403-406.
McConn, M., R.A. Creelman, E. Bell, J.E. Mullet and J. Browse. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 94: 5473-5477.
McCourt, P. 1999. Genetic analysis of hormone signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 219-243.
Moller, S.G. and N.H. Chua. 1999. Interactions and intersections of plant signaling pathways. J. Mol. Biol. 293: 219-234.
Normanly, J., J.D. Cohen and G.R. Fink. 1993. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. U.S.A. 90:10355-9.
Overmyer, K., H. Tuominen, R. Kettunen, C. Betz, C. Langebartels, H. Sandermann, Jr. and J. Kangasjarvi. 2000. Ozone-sensitiveArabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12: 1849-62.
Palme, K., F. Bischoff, F. Cvrckova and V. Zarsky. 1997. Small Gproteins in Arabidopsis thaliana. Biochem. Soc. Trans. 25: 1001- 1005.
Peng, J., D.E. Richards, T. Moritz, A. Cano-Delgado and N.P. Harberd. 1999. Extragenic suppressors of the Arabidopsis gai mutation alter the dose-response relationship of diverse gibberellin responses. Plant Physiol. 119: 1199-1208.
Pennazio, S., D. Colaricio, P. Rogero and R. Lenzi. 1987. Effect of salicylate stress on the hypersensitive response of asparagus bean to tobacco necrosis virus. Physiol Mol Plant Pathol. 30: 347-357.
Penninckx, I.A., K. Eggermont, F.R. Terras, B.P. Thomma, G.W. De Samblanx, A. Buchala, J.P. Metraux, J.M. Manners and W.F. Broekaert. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309-23.
Rao, M.V., J.R. Koch and K.R. Davis. 2000. Ozone: a tool for probing programmed cell death in plants. Plant Mol. Biol. 44: 345-58.
Reed, J.W., R.P. Elumalai and J. Chory. 1998. Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation. Genetics 148: 1295-1310.
Reid, J.B. 1993. Plant hormone mutants. J. Plant Growth Regul. 12:207-226.
Reymond, P. and E.E. Farmer. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant. Biol. 1: 404-411.
Ross, J.J., J.B. Reid and S.M. Swain. 1993. Control of stem elongation by giberellin A1: Evidence from genetic studies including slender mutant, sln. Aust. J. Plant Physiol. 20: 585-599.
Salisbury, F.B. and C.W. Ross. 1992. Plant physiology Wadsworth, Balmont, CA. Sanders, P.M., P.Y. Lee, C. Biesgen, J.D. Boone, T.P. Beals, E.W. Weiler and R.B. Goldberg. 2000. The Arabidopsis delayed dehiscence1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041-61.
Staswick, P.E., W. Su and S. Howell. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. U.S.A. 89: 6837-6840.
Staswick, P.E., G.Y. Yuen and C.C. Lehman. 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15: 747-54.
Staswick, P.E., I. Tiryaki and M.L. Rowe. 2002. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes f the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-15.
Steber, C.M., S.E. Cooney and P. McCourt. 1998. Isolation of the GAresponse mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149: 509-21.
Steudle, E. 2000. Water uptake by roots: effects of water deficit. J.
Exp. Bot. 51: 1531-1542.
Stintzi, A. and J. Browse. 2000. The Arabidopsis male-sterile mutant,opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. U.S.A. 97: 10625-10630.
Stintzi, A., H. Weber, P. Reymond, J. Browse and E.E. Farmer. 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. U.S.A. 98: 12837-12842.
Stone, J.M. and J.C. Walker. 1995. Plant protein kinase families and signal transduction. Plant Physiol. 108: 451-7.
Sundaresan, V., P. Springer, T. Volpe, S. Haward, J.D. Jones, C. Dean, H. Ma and R. Martienssen. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797-810.
Tang, W., S.R. Brady, Y. Sun, G.K. Muday and S.J. Roux. 2003. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol. 131: 147-54.
Tiryaki, I. and P.E. Staswick. 2002. An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiol. 130: 887-94.
Traw, M.B. and J. Bergelson. 2003. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in
Arabidopsis. Plant Physiol. 133: 1367-75.
Turner, J.G., C. Ellis and A. Devoto. 2002. The jasmonate signal pathway. Plant Cell 14: S153-64.
Vijayan, P., J. Shockey, C.A. Levesque, R.J. Cook and J. Browse. 1998. A role for jasmonate in plant defense of Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 95: 7209-7214.
Woeste, K.E. and J.J. Kieber. 2000. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12: 443-55.
Woeste, K.E., C. Ye and J.J. Kieber. 1999. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119: 521-30.
Xie, D.-X., B.F. Feys, M. Nieto-Rostro and J.G. Turner. 1998. COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091-1094.
Xu, L., F. Liu, E. Lechner, P. Genschik, W.L. Crosby, H. Ma, W. Peng, D. Huang and D. Xie. 2002. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14: 1919-1935.